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uint8_t speed = 240;
for (uint8_t i = 0; i < 30;

i++) {
// Beschleunigen

speed += 1;
printf("Auto faehrt mit
%u km/h\n", speed);

}
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short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
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// 0: big endian, 1: little endian

int endianess(){
uint32_t i=0x01234567;

return (*((uint8_t*)(&i))) == 0x67;
}



▶

uint32_t value = 0x0000F000; // Little Endian: 00 F0 00 00

printf("Wert vor Shift : %#.8x\n", value); // Gibt immer

0x0000F000 aus

value = value << 1; // Logischer Links-Shift

printf("Wert nach Shift: %#.8x\n", value); // Gibt immer

0x0001E000 aus

// Speicherbelegung:

// - auf Little Endian (x86): 00 E0 01 00

// - auf Big Endian (MIPS): 00 01 E0 00

▶
▶



void print_bytes(void *val, int len) {
uint8_t *ptr = (uint8_t*)val;
int count;

for (count = 0; count < len; count++) {
printf("0x%x: %.2x", &ptr[count], ptr[count]);

}
}
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▶ & ☞
▶ | ☞
▶ ^ ☞
▶ ~ ☞



▶ ~x + 1 == -x

▶ ~x + x == -1

▶

▶
▶

▶
▶ (var | FLAGS) == FLAGS



▶ & | ~ ^

▶ short int long
unsigned char

▶

▶ && || !
▶

▶
▶
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int i[2] = { 42, 23 };
int x = 4711;

int *xptr = &x;
int *iptr = &i[0];

printf("x vor Zeiger-Operation: %d\n", x);
*xptr = 1147;
printf("x nach Zeiger-Operation: %d\n\n", x);

printf("&i[0]: %p, &i[1]: %p\n", &i[0], &i[1]);
printf("Differenz &i[1] - &i[0]: %lu\n", &i[1]-&i[0]);
printf("Void-Differenz &i[1] - &i[0]: %lu\n\n",

(void*)&i[1]-(void*)&i[0]);

printf("iptr: %p, iptr+1: %p\n", iptr, iptr+1);



unsigned long l = ULONG_MAX;
unsigned int i[2] = { 0, 1 };
unsigned int *iptr = &i[0];
unsigned long *iptr2 = (unsigned long*)&i[0];

printf("i[0]: %u, i[1]: %u\n", i[0], i[1]);

*iptr = l;
printf("i[0]: %u, i[1]: %u\n", i[0], i[1]);

*iptr2 = l;
printf("i[0]: %u, i[1]: %u\n", i[0], i[1]);



struct collection {
int a, b, c;
unsigned long d;

};

struct collection c[2];
struct collection *cptr = &c[0];

printf("sizeof(int): %lu, sizeof(long): %lu\n", sizeof(int),
sizeof(long));

printf("sizeof(collection): %lu\n\n", sizeof(struct
collection));

printf("&c[0]: %p, &c[1]: %p\n\n", &c[0], &c[1]);
printf("Differenz &c[1] - &c[0]: %lu\n", &c[1]-&c[0]);
printf("Differenz (void*)&c[1] - (void*)&c[0]: %lu\n",

(void*)&c[1]-(void*)&c[0]);

printf("cptr: %p, cptr+1: %p\n", cptr, cptr+1);



#define offsetof(type, element) \
((size_t)&(((type *)0)->element))

struct collection {
int a;
int b;
int c;
unsigned long d;

};

printf("offset(a): %lu\n", offsetof(struct collection, a));
printf("offset(b): %lu\n", offsetof(struct collection, b));
printf("offset(c): %lu\n", offsetof(struct collection, c));
printf("offset(d): %lu\n", offsetof(struct collection, d));
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▶ nop

▶ load store

▶ add sub cmp

▶ and or xor

▶ jmp
jlt jgt
jeq jne



▶
▶

▶
▶
▶ ☞



▶

▶

▶

▶



▶
▶
▶



load r1, 0x0
load r2, 0x4
add r1, r1, r2
store r1, 0x8

▶ ☞

▶

load r1, 0x0
load r2, r1
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▶
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load r1, 0x0
load r2, 0x4
cmp r1, r2
jne L1 // r1 != r2?
<Anweisungen fuer Ergebnis r1 == r2>
...
jmp L2

L1:
<Anweisungen fuer Ergebnis r1 != r2>
...
L2:
<Gemeinsamer Pfad>



load r1, 0x0
load r2, 0x4
load r3, 0x8
L1:
// Schleifenkoerper: Aktion durchfuehren
sub r1, r1, r3
cmp r1, r2 // Schleifenzähler == 0?
jne L1 // Nein, Schleife nochmals durchlaufen
L2:
// Code nach Schleife
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int x, y, z;
...
x = y + z

load r1, &y
load r2, &z
add r0, r1, r2 // r0 <- r1 + r2
store r0, &x
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CPU
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Register

Speicher

Binärcode

Daten

Adressen

Daten

Instruktionen

Stack

Condition
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int sum(int x, int y) {
int res;
res = x + y;

return (res);
}



▶
▶

sum:
sub sp, sp, #20
str r0, [sp, #16]
str r1, [sp, #12]
ldr r2, [sp, #16]
add r2, r2, r1
str r2, [sp, #8]
str r0, [sp, #4]
mov r0, r2
str r1, [sp]
add sp, sp, #20
bx lr

sum:
pushq %rbp
movq %rsp, %rbp
movl %edi, -20(%rbp)
movl %esi, -24(%rbp)
movl -24(%rbp), %eax
movl -20(%rbp), %edx
addl %edx, %eax
movl %eax, -4(%rbp)
movl -4(%rbp), %eax
popq %rbp
ret



▶
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sum:
sub sp, sp, #20
str r0, [sp, #16]
str r1, [sp, #12]
ldr r2, [sp, #16]
add r2, r2, r1
str r2, [sp, #8]
str r0, [sp, #4]
mov r0, r2
str r1, [sp]
add sp, sp, #20
bx lr

sum:
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-20], edi
mov DWORD PTR [rbp-24], esi
mov eax, DWORD PTR [rbp-24]
mov edx, DWORD PTR [rbp-20]
add eax, edx
mov DWORD PTR [rbp-4], eax
mov eax, DWORD PTR [rbp-4]
pop rbp
ret



0xe5 0x2d 0xd0 0x04 0xe2 0x8d

0xb0 0x00 0xe2 0x4d 0xd0 0x14

0xe5 0x0b 0x00 0x10 0xe5 0x0b

0x10 0x14 0xe5 0x1b 0x20 0x10

0xe5 0x1b 0x30 0x14 0xe0 0x82

0x30 0x03 0xe5 0x0b 0x30 0x08

0xe5 0x1b 0x30 0x08 0xe1 0xa0

0x00 0x03 0xe2 0x8b 0xd0 0x00

0xe8 0xbd 0x08 0x00 0xe1 0x2f

0xff 0x1e

0x55 0x48 0x89 0xe5 0x89 0x7d

0xec 0x89 0x75 0xe8 0x8b 0x45

0xe8 0x8b 0x55 0xec 0x01 0xd0

0x89 0x45 0xfc 0c8b 0x45 0xfc

0x5d 0xc3

▶
▶
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ldr r2, [fp, #-16]
ldr r3, [fp, #-20]
add r3, r2, r3
str r3, [fp, #-8]

int r2, r3, *fp;

// Operanden aus Array

// (Speicher) holen

r2 = fp[-16];
r3 = fp[-20];

r2 = r2 + r3; // Addition

// Resultat in Array schreiben

fp[-8] = r2;

▶
▶



mov eax,DWORD PTR [rbp-0x18]
mov edx,DWORD PTR [rbp-0x14]

add eax,edx

mov DWORD PTR [rbp-0x4],eax

int eax, edx, *rbp;

// Operanden aus Array

// (Speicher) holen

eax = rbp[-0x18];
edx = rbp[-0x14];

eax = eax + edx; // Addition

// Ergebnis in Array schreiben

rbp[-0x4] = eax;
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▶ cat /proc/ pid /maps
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Strings

Binär

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc oder 
ld)

C-Programm (p1.c p2.c)

Asm-Programm (p1.s p2.s)

Objektcode (p1.o p2.o)

Ausführbares Program (p)

Statische

Bibliothek (.a)

Strings

Strings

Binär



▶ gcc

▶ gas

▶ ld ld.so

▶ objdump readelf

▶ gdb

▶ nm

▶ strings

▶ addr2line

▶ www.gnu.org/software/binutils

www.gnu.org/software/binutils


▶ tool

▶
arm-linux-gnueabi- tool mips-sgi-irix- tool

▶ gcc clang



sh> arm-linux-gnueabi-objdump -dS sum.o
int sum (int x, int y) {

0: e52db004 push {fp} ; (str fp, [sp, #-4]!)
4: e28db000 add fp, sp, #0
8: e24dd014 sub sp, sp, #20
c: e50b0010 str r0, [fp, #-16]
10: e50b1014 str r1, [fp, #-20]
int res;
res = x+y;
14: e51b2010 ldr r2, [fp, #-16]
18: e51b3014 ldr r3, [fp, #-20]
1c: e0823003 add r3, r2, r3
20: e50b3008 str r3, [fp, #-8]

return (res);
24: e51b3008 ldr r3, [fp, #-8]

}
28: e1a00003 mov r0, r3
2c: e28bd000 add sp, fp, #0
30: e8bd0800 ldmfd sp!, {fp}
34: e12fff1e bx lr



sh> objdump -dS sum.o

int sum (int x, int y) {
0: 55 push rbp
1: 48 89 e5 mov rbp,rsp
4: 89 7d ec mov DWORD PTR [rbp-0x14],edi
7: 89 75 e8 mov DWORD PTR [rbp-0x18],esi
int res;
res = x+y;
a: 8b 45 e8 mov eax,DWORD PTR [rbp-0x18]
d: 8b 55 ec mov edx,DWORD PTR [rbp-0x14]
10: 01 d0 add eax,edx
12: 89 45 fc mov DWORD PTR [rbp-0x4],eax

return (res);
15: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]

}
18: 5d pop rbp
19: c3 ret



▶ gdb objekt

▶
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▶
▶ gdbserver
▶
gdb
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▶
▶ ldr r0, [r1]

▶ ldr
▶
▶
▶ [r1]
▶
▶

▶
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▶ str r0, [r1, #N]

▶ str
▶
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void swap(int *xp, int *yp) {
int t0 = *xp;
int t1 = *yp;
*xp = t1;
*yp = t0;

}

ldr r3, [fp, #-16] int t0 = *xp;

ldr r3, [r3]
str r3, [fp, #-12]

ldr r3, [fp, #-20] int t1 = *yp;

ldr r3, [r3]
str r3, [fp, #-8]

ldr r3, [fp, #-16] *xp = t1;

ldr r2, [fp, #-8]
str r2, [r3]

ldr r3, [fp, #-20] *yp = t0;

ldr r2, [fp, #-12]
str r2, [r3]
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▶ http://infocenter.arm.com
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http://infocenter.arm.com
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▶ 2.2 Current Program Status Register 23

Fields
Bit

Function
Condition

flags
Interrupt
Masks

Processor
mode

Thumb
state

31 30 29 28

N Z C V

7 6 5 4 0

I F T Mode

Flags Status Extension Control

Figure 2.3 A generic program status register (psr).

8-bit instructions. We will discuss Jazelle more in Section 2.2.3. It is highly probable that
future designs will assign extra bits for the monitoring and control of new features.

For a full description of the cpsr, refer to Appendix B.

2.2.1 Processor Modes

The processor mode determines which registers are active and the access rights to the cpsr
register itself. Each processor mode is either privileged or nonprivileged: A privileged mode
allows full read-write access to the cpsr. Conversely, a nonprivileged mode only allows read
access to the control field in the cpsr but still allows read-write access to the condition flags.

There are seven processor modes in total: six privileged modes (abort, fast interrupt
request, interrupt request, supervisor, system, and undefined) and one nonprivileged mode
(user).

The processor enters abort mode when there is a failed attempt to access memory. Fast
interrupt request and interrupt request modes correspond to the two interrupt levels available
on the ARM processor. Supervisor mode is the mode that the processor is in after reset and
is generally the mode that an operating system kernel operates in. System mode is a special
version of user mode that allows full read-write access to the cpsr. Undefined mode is used
when the processor encounters an instruction that is undefined or not supported by the
implementation. User mode is used for programs and applications.

2.2.2 Banked Registers

Figure 2.4 shows all 37 registers in the register file. Of those, 20 registers are hidden from
a program at different times. These registers are called banked registers and are identified
by the shading in the diagram. They are available only when the processor is in a particular
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76 ARM Organization and Implementation 

D[31: Figure 

4.1     3-stage pipeline ARM organization. 

When the processor is executing simple data processing instructions the pipeline 
enables one instruction to be completed every clock cycle. An individual instruction 
takes three clock cycles to complete, so it has a three-cycle latency, but the through-
put is one instruction per cycle. The 3-stage pipeline operation for single-cycle 
instructions is shown in Figure 4.2 on page 77. 

 

▶
▶

▶



void test_asm() {
// Effektives nop

asm("mov r3, r3")
}

▶

▶

▶



▶ asm( code : Liste Ausgabeoperanden : Liste

Eingabeoperanden : Clobber-Liste );

▶

int main() {
uint32_t result;
uint32_t value = 0x8;

printf("Wert vor asm: 0x%x\n", value); // 0x8 = 1000b

asm("mov %0, %1, ror #1" : "=r" (result) : "r" (value));
printf("Wert nach asm: 0x%x\n", result); // 0x4 = 0100b

return(0);
}



/* Eigenständiges Assembler-Programm */
.global main /* main: Haupteintrittspunkt als globales Symbol */

.func main /* main als Funktion kenntlich machen */
main: /* Label für main*/

mov r0, #42 /* r0: Per Konvention BS-Returncode */
bx lr /* Rücksprung */

.endfunc

▶
arm-linux-gnueabi-as standalone.s -o
standalone.o

▶
arm-linux-gnueabi-gcc standalone.o -o
standalone

▶ arm-linux-gnueabi-gcc standalone.s -o
standalone



▶ ./standalone; echo $?

▶ file

▶ nm



▶ .directive

▶ label:

▶ #

▶
▶ @ Comment
▶

▶
▶

gas



▶

▶

▶

▶

▶
▶
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The Original Instruction Pipeline

� The ARM uses a pipeline in order to increase the speed of the 
flow of instructions to the processor.
– Allows several operations to be undertaken simultaneously, rather than 
serially.

� Rather than pointing to the instruction being executed, the PC 
points to the instruction being fetched.

148/22/2008

FETCH

DECODE

EXECUTE

Instruction fetched from memory

Decoding of registers used in instruction

Register(s) read from Register Bank
Shift and ALU operation
Write register(s) back to Register Bank

PC

PC - 4

PC - 8
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ARM Instruction Set Format

178/22/2008

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0 Instruction Type

Condition 0 0 I OPCODE S Rn Rs OPERAND‐2 Data processing

Condition 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm Multiply

Condition 0 0 0 0 1 U A S Rd HIGH Rd LOW Rs 1 0 0 1 Rm Long Multiply

Condition 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm Swap

Condition 0 1 I P U B W L Rn Rd OFFSET Load/Store ‐ Byte/Word

Condition 1 0 0 P U B W L Rn REGISTER LIST Load/Store Multiple

Condition 0 0 0 P U 1 W L Rn Rd OFFSET 1 1 S H 1 OFFSET 2 Halfword Transfer Imm Off

Condition 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm Halfword Transfer Reg Off

Condition 1 0 1 L BRANCH OFFSET Branch

Condition 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn Branch Exchange

Condition 1 1 0 P U N W L Rn CRd CPNum OFFSET COPROCESSOR DATA XFER

Condition 1 1 1 0 Op‐1 CRn CRd CPNum OP‐2 0 CRm COPROCESSOR DATA OP

Condition OP‐1 L CRn Rd CPNum OP‐2 1 CRm COPROCESSOR REG XFER

Condition 1 1 1 1 SWI NUMBER Software Interrupt
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ARM Instruction Set Format
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3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0 Instruction Type

Condition 0 0 I OPCODE S Rn Rs OPERAND‐2 Data processing

Condition 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm Multiply

Condition 0 0 0 0 1 U A S Rd HIGH Rd LOW Rs 1 0 0 1 Rm Long Multiply

Condition 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm Swap

Condition 0 1 I P U B W L Rn Rd OFFSET Load/Store ‐ Byte/Word

Condition 1 0 0 P U B W L Rn REGISTER LIST Load/Store Multiple

Condition 0 0 0 P U 1 W L Rn Rd OFFSET 1 1 S H 1 OFFSET 2 Halfword Transfer Imm Off

Condition 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm Halfword Transfer Reg Off

Condition 1 0 1 L BRANCH OFFSET Branch

Condition 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn Branch Exchange

Condition 1 1 0 P U N W L Rn CRd CPNum OFFSET COPROCESSOR DATA XFER

Condition 1 1 1 0 Op‐1 CRn CRd CPNum OP‐2 0 CRm COPROCESSOR DATA OP

Condition OP‐1 L CRn Rd CPNum OP‐2 1 CRm COPROCESSOR REG XFER

Condition 1 1 1 1 SWI NUMBER Software Interrupt

▶
▶ OFFSET
▶ BRANCH OFFSET
▶ OPERAND

▶
▶



▶
▶

▶
▶
▶



▶
▶

▶
▶
▶

▶
▶
▶

▶
▶
▶



▶
▶
▶ str r0, [r1] ldr r2, [r1]

EE382N-4  Embedded Systems Architecture

Load and Store Word or Byte:  Base Register

� The memory location to be accessed is held in a base register

STR r0, [r1] ; Store contents of r0 to location pointed to
; by contents of r1.

LDR r2, [r1] ; Load r2 with contents of memory location
; pointed to by contents of r1.
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r1

0x200
Base

Register

Memory

0x50x200

r0

0x5
Source
Register
for STR

r2

0x5
Destination
Register
for LDR



Adressierungsart 
lmpli zitl/mplicit: 
IInstruktion I 

Register 

Daten 
Unmitte!bar/Jmmediate (auch: Absolut!Abso/ute): 
I Instruktion I 
I Daten I 
Registerdirekt/Register direct: 
I lnstruktion I 
I Adresse I Daten 
Registerindirekt!Register indirect: 
I Instruktion I 
I Adresse I Adresse 

Speicherdirekt!Memory direct: 
I Instruktion I 
I Adresse I 
Speicherindirekt!Memory indirect: 
I Instruktion I 
I Adresse I Adresse 

Speicher 

•I Daten 

Daten 

Adresse 
Registerindirekt mit Offset/Register indirect with Offset: 

:: :::::. Daten 

Speicherdirekt, indiziert!Memory direct indexed: 

Index 

Register relativ!Register relative: 

Adresse 

Speicher 

Daten 

▶

▶

▶
☞

▶



ldr|str Rd , adressierungsmodus

▶
▶ ldr Rd , [ Rn , offset_12
▶ ldr r0, [r1, #16]
▶

▶
▶ ldr Rd , [ Rn , Rm ]
▶ ldr r0, [r1, -r2]
▶

▶
▶ ldr Rd , [ Rn , Rm , Shift-Typ #shift_imm]
▶ ldr r0, [r1, r2, lsl #4]
▶

▶ ☞



▶
▶

▶ ldr r0, [r1], #4
▶

▶
▶ ldr r0, [r1, #4]!
▶

▶

ldr r0, [r1]
add r0, r0, #4

ldr r0, [r1], #4
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Load/Store Word or Byte: Pre‐indexed Addressing

� Example: STR r0, [r1,#12]

– To store to location 0x1f4 instead use: STR r0, [r1,#‐12]
– To auto‐increment base pointer to 0x20c use: STR r0, [r1, #12]!
– If r2 contains 3, access 0x20c by multiplying this by 4:
• STR r0, [r1, r2, LSL #2]

498/22/2008

r1

0x200
Base

Register

Memory

0x5

0x200

r0

0x5
Source
Register
for STR

Offset

12 0x20c

▶ str r0, [r1, #-12]

▶ str r0, [r1, #12]!

▶ str r0, [r1, r2, lsl #2]
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Load and Store Word or Byte: Post‐indexed Addressing

� Example: STR r0, [r1], #12

– To auto‐increment the base register to location 0x1f4 instead use:
• STR r0, [r1], #‐12

– If r2 contains 3, auto‐increment base register to 0x20c by multiplying this by 
4:
• STR r0, [r1], r2, LSL #2

508/22/2008

r1
0x200

Original
Base

Register

Memory

0x50x200

r0
0x5

Source
Register
for STR

Offset
12 0x20c

r1
0x20c

Updated
Base
Register

▶ str r0, [r1], #-12

▶ str r0, [r1], r2, lsl #2



▶ ldm

▶ stm

▶
▶ ldm/stm Rn{!},

3.3 Load-Store Instructions 65

Load-store multiple instructions can increase interrupt latency. ARM implementations
do not usually interrupt instructions while they are executing. For example, on an ARM7
a load multiple instruction takes 2 + Nt cycles, where N is the number of registers to load
and t is the number of cycles required for each sequential access to memory. If an interrupt
has been raised, then it has no effect until the load-store multiple instruction is complete.

Compilers, such as armcc, provide a switch to control the maximum number of registers
being transferred on a load-store, which limits the maximum interrupt latency.

Syntax: <LDM|STM>{<cond>}<addressing mode> Rn{!},<registers>{ˆ}

LDM load multiple registers {Rd}∗N <- mem32[start address + 4∗N] optional Rn updated

STM save multiple registers {Rd}∗N -> mem32[start address + 4∗N] optional Rn updated

Table 3.9 shows the different addressing modes for the load-store multiple instructions.
Here N is the number of registers in the list of registers.

Any subset of the current bank of registers can be transferred to memory or fetched
from memory. The base register Rn determines the source or destination address for a load-
store multiple instruction. This register can be optionally updated following the transfer.
This occurs when register Rn is followed by the ! character, similiar to the single-register
load-store using preindex with writeback.

Table 3.9 Addressing mode for load-store multiple instructions.

Addressing
mode Description Start address End address Rn!

IA increment after Rn Rn + 4∗N − 4 Rn + 4∗N
IB increment before Rn + 4 Rn + 4∗N Rn + 4∗N
DA decrement after Rn − 4∗N + 4 Rn Rn − 4∗N
DB decrement before Rn − 4∗N Rn − 4 Rn − 4∗N

Example
3.17

In this example, register r0 is the base register Rn and is followed by !, indicating that the
register is updated after the instruction is executed. You will notice within the load multiple
instruction that the registers are not individually listed. Instead the “-” character is used to
identify a range of registers. In this case the range is from register r1 to r3 inclusive.

Each register can also be listed, using a comma to separate each register within
“{” and “}” brackets.

PRE mem32[0x80018] = 0x03
mem32[0x80014] = 0x02
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stmfd stmdb ldmfd ldmia
stmfa stmib ldmfa ldmda
stmed stmda ldmed ldmib
stmea stmia ldmea ldmdb
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Figure 3.2   Multiple register transfer addressing modes. 

Table 3.1    The mapping between the stack and block copy views of the load and store 
multiple instructions. 
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Figure 3.2   Multiple register transfer addressing modes. 

Table 3.1    The mapping between the stack and block copy views of the load and store 
multiple instructions. 

 



▶ sizeof( datum )

▶
▶

▶
▶

▶

▶
▶
▶ *(ptr & ~0x3)



▶
▶

▶

▶

▶

▶

▶
▶
▶
▶
▶
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The Condition Field

198/22/2008

1001 = LS - C clear or Z (set unsigned lower 
or same) 

1010 = GE - N set and V set, or N clear and V 
clear (>or =)

1011 = LT - N set and V clear, or N clear and 
V set (>)

1100 = GT - Z clear, and either N set and V 
set, or N clear and V set (>)

1101 = LE - Z set, or N set and V clear,or N 
clear and V set (<, or =)

1110 = AL - always

1111 = NV - reserved.

0000 = EQ - Z set (equal)
0001 = NE - Z clear (not equal)
0010 = HS / CS  - C set (unsigned higher or 

same)
0011 = LO / CC - C clear (unsigned lower)
0100 = MI -N set (negative)
0101 = PL - N clear (positive or zero)
0110 = VS - V  set (overflow)
0111 = VC - V clear (no overflow)
1000 = HI - C set and Z clear (unsigned 

higher)

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0 Instruction Type

Condition 0 0 I OPCODE S Rn Rs OPERAND‐2 Data processing



▶ add r0, r1, r2
▶
▶ add addal

▶ addeq r0, r1, r2
▶ if (zero_flag_set()) { }
▶
▶

▶
▶ s



cmp r3, #0
beq skip
add r0, r1, r2

skip:
... Assembler-Code ...

@ Schleifenzähler

@ initialisieren

mov r0, #42
loop:

... Assembler-Code ...

@ Schleifenzähler

@ dekrementieren und

@ Flags setzen (s-Suffix!)

subs r0, r0, #1

@ Wenn Ergebnis ungleich 0:

@ Weiterer Schleifen-

@ durchlauf

bnz loop
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Branch instructions (1)

228/22/2008

� Branch : B{<cond>} label
� Branch with Link : BL{<cond>} sub_routine_label

� The offset for branch instructions is calculated by the assembler:
– By taking the difference between the branch instruction and the target address 
minus 8 (to allow for the pipeline).

– This gives a 26 bit offset which is right shifted 2 bits (as the bottom two bits are 
always zero as instructions are word – aligned) and stored into the instruction 
encoding.

– This gives a range of ± 32 Mbytes.

Condition field

Link bit 0 = Branch
1 = Branch with link

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Condition 1 0 1 L BRANCH OFFSET

▶ B label
▶
▶ <<
▶
▶

▶ BL label
▶ B PC-8+4 PC-4

▶



.data @ Datendefinitionen

.balign 4 @ Ausrichtung an 4 Byte-Grenzen

varx:
.word 4
vary:
.word 3

.text

.balign 4 @ Programcode wird im .text-Abschnitt gespeichert

.global main

.func main
main:
@ Lokale Register: x=r0, y=r1, tmp=r2

ldr r0, x_ptr @ Pseudo-Instruktion: &a in r0 laden

ldr r0, [r0] @ r0 = *r0

ldr r1, y_ptr
ldr r1, [r1] @ r2 = *r2

@ x = x+y berechnen

@ r0 ist gleichzeitig Rückgabevariable

add r0, r0, r1

bx lr
.endfunc

// Zeiger auf die Variablen
x_ptr : .word varx
y_ptr : .word vary



ldr R
n
, pointer

▶
▶
▶



▶ .text

▶ .rodata
▶ .data

▶
▶

▶
▶

▶

▶



bl

▶
▶
▶ bx lr

▶ mov pc, lr
▶
▶

▶



▶

▶

▶

▶
▶

▶
▶

▶



▶

▶
▶
▶

▶
▶
▶
▶ struct
▶
▶
▶



callee:
@ Register auf Stack sichern
stmfd sp!, {r4-r10, fp, lr}

@ Argumente sind in r0..r3
... Assembler-Code ...

@ Modifizierte Register wiederherstellen
ldmfd sp!, {r4-r10, fp, lr}

mov r0, #0 @ Rueckgabewert 0 in r0
bx lr



int test2(int a, int b, int c, int d, int e, int f) {
0x0000844c <+0>: push {r11, lr}
0x00008450 <+4>: add r11, sp, #4
0x00008454 <+8>: sub sp, sp, #16
0x00008458 <+12>: str r0, [r11, #-8]
0x0000845c <+16>: str r1, [r11, #-12]
0x00008460 <+20>: str r2, [r11, #-16]
0x00008464 <+24>: str r3, [r11, #-20]

func1();
0x00008468 <+28>: bl 0x8578 <func1>

return(e * f);
0x0000846c <+32>: ldr r3, [r11, #4]
0x00008470 <+36>: ldr r2, [r11, #8]
0x00008474 <+40>: mul r3, r2, r3

}
0x00008478 <+44>: mov r0, r3
0x0000847c <+48>: sub sp, r11, #4
0x00008480 <+52>: pop {r11, pc}



int fak(int n) {
if (n == 0)

return (1);

return(n*fak(n-1));
}

▶
▶

▶



▶ gdb

▶

▶

▶ bt
▶ info frame n

▶
▶
▶
▶

▶

▶ $sp



▶ gdb

▶

▶

▶ break
▶

▶

▶ disas /m symbol

symbol

▶ print *(unsigned
int*)$fp[+k*4]



(gdb) info frame
Stack level 0, frame at 0xbefff6e8:
pc = 0x8458 in test2 (call.c:13); saved pc 0x8504
called by frame at 0xbefff718
source language c.
Arglist at 0xbefff6e4, args: a=1, b=2, c=3, d=4, e=23, f=42
Locals at 0xbefff6e4, Previous frame's sp is 0xbefff6e8
Saved registers:
r11 at 0xbefff6e0, lr at 0xbefff6e4



▶ opcode☞ opcode cond S

▶ S

▶



uint32_t cpsr = 0;
volatile int val = INT_MAX;

printf("val vorher: %d\n", val);

asm("mrs %0, CPSR" : "=r" (cpsr) : );
printf("Wert von CPSR: 0x%x\n", cpsr);

// Overflow provozieren und CPSR lesen

// -> Negative Result und ALU overflowed (Bits 31 und 28)

asm("adds %0, %0, #1" : "=r" (val) : "r" (val));
asm("mrs %0, CPSR" : "=r" (cpsr) : );

// Overflow-Bit (V) und Negative Result-Bit (N) gesetzt

printf("Wert von CPSR: 0x%x, val: %d\n", cpsr, val);



val vorher: 2147483647
Wert von CPSR: 0x60000010
Wert von CPSR: 0x90000010, val: -2147483648



▶
▶
▶
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Conditional Branches
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Branch  Interpretation  Normal uses 
B 
BAL 

Unconditional 
Always 

Always take this branch 
Always take this branch 

BEQ  Equal  Comparison equal or zero result 
BNE  Not equal  Comparison not equal or non‐zero result 
BPL  Plus  Result positive or zero 
BMI  Minus  Result minus or negative 
BCC 
BLO 

Carry clear 
Lower 

Arithmetic operation did not give carry‐out 
Unsigned comparison gave lower 

BCS 
BHS 

Carry set 
Higher or same 

Arithmetic operation gave carry‐out 
Unsigned comparison gave higher or same 

BVC  Overflow clear  Signed integer operation; no overflow occurred 
BVS  Overflow set  Signed integer operation; overflow occurred 
BGT  Greater than  Signed integer comparison gave greater than 
BGE  Greater or equal  Signed integer comparison gave greater or equal 
BLT  Less than  Signed integer comparison gave less than 
BLE  Less or equal  Signed integer comparison gave less than or equal 
BHI  Higher  Unsigned comparison gave higher 
BLS  Lower or same  Unsigned comparison gave lower or same 



operation { cond }

▶ add adc

▶ sub sbc

▶ rsb rsc

▶
▶
▶
▶
▶



▶ mul{ cond }{S}
▶
▶

▶ mla{ cond }{S}
▶

▶

▶
▶
▶
▶



▶
▶
▶
▶

▶
▶
▶



LSL ASL
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Barrel Shifter ‐ Left Shift

� Shifts left by the specified amount (multiplies by powers of two) 
e.g. 

LSL #5   => multiply by 32

328/22/2008

Logical Shift Left (LSL)

DestinationCF 0

ASR
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Barrel Shifter ‐ Right Shifts
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Logical Shift Right (LSR) 
Shifts right by the specified 
amount (divides by powers of 
two) e.g. 

LSR #5 = divide by 32

Arithmetic Shift Right (ASR)  
Shifts right (divides by powers of 
two) and preserves the sign bit, 
for 2's complement operations. 
e.g. 

ASR #5 = divide by 32

Destination CF

Destination CF

Logical Shift Right

Arithmetic Shift Right

...0

Sign bit shifted in

zero shifted in



LSR
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Barrel Shifter ‐ Right Shifts
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Logical Shift Right (LSR) 
Shifts right by the specified 
amount (divides by powers of 
two) e.g. 

LSR #5 = divide by 32

Arithmetic Shift Right (ASR)  
Shifts right (divides by powers of 
two) and preserves the sign bit, 
for 2's complement operations. 
e.g. 

ASR #5 = divide by 32

Destination CF

Destination CF

Logical Shift Right

Arithmetic Shift Right

...0

Sign bit shifted in

zero shifted in

▶
▶
▶



ROR
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Barrel Shifter ‐ Rotations 
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Rotate Right (ROR)

Similar to an ASR but the bits 
wrap around as they leave the 
LSB and appear as the MSB.

e.g.          ROR #5

Note the last bit rotated is also 
used as the Carry Out.

Rotate Right Extended (RRX)

This operation uses the CPSR C 
flag as a 33rd bit. 

Rotates right by 1 bit. Encoded 
as          ROR #0

Destination CF

Rotate Right

Destination CF

Rotate Right through Carry

▶
▶



RRX

EE382N-4  Embedded Systems Architecture

Barrel Shifter ‐ Rotations 

348/22/2008

Rotate Right (ROR)

Similar to an ASR but the bits 
wrap around as they leave the 
LSB and appear as the MSB.

e.g.          ROR #5

Note the last bit rotated is also 
used as the Carry Out.

Rotate Right Extended (RRX)

This operation uses the CPSR C 
flag as a 33rd bit. 

Rotates right by 1 bit. Encoded 
as          ROR #0

Destination CF

Rotate Right

Destination CF

Rotate Right through Carry

▶
▶
▶ ROR #0

▶
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358/22/2008

� Register, optionally with shift 
operation applied.

� Shift value can be either be:
¾ 5 bit unsigned integer
¾ Specified in bottom byte of 
another register.

* Immediate value

¾ 8 bit number

¾ Can be rotated right 
through an even number 
of positions.

¾ Assembler will calculate 
rotate for you from 
constant.

Operand 
1

Result

ALU

Barrel 
Shifter

Operand 
2

▶
▶
▶

▶
▶

▶

▶



int mul12(int x) {
return x*12;

} mov r3, r0
lsl r3, r3, #1
add r3, r3, r0
lsl r3, r3, #2

add r0, r0, r0, lsl #1
lsl r0, r0, #2



▶

▶ ldrh
strh

▶ ldrb strb

▶ ldrsb

▶ and orr eor

▶ orn bic

▶ sxth sxtb

▶



▶
▶

for (int i=0, s=0; i < n; i++) {
s = s + a[i]*b[i]

}



.globl do_mul @ Parameter: r0 = N, r1 = &a, r2 = &b

.func do_mul

do_mul:
push {r4, r5, r6, r8}
mov r3, #0 @ Schleifenindex i

mov r8, #0 @ R
8

= Array-Index idx

mov r5, #0 @ Zwischensumme

.Lloop:
ldr r4, [r1, r8] @ a[i] in R

4
laden

ldr r6, [r2, r8] @ b[i] in R
6

laden

mul r4, r4, r6 @ R
4

= a[i] * b[i]

add r5, r5, r4 @ s = s + R
4

add r3, r3, #1 @ i = i + 1

add r8, r8, #4 @ idx = idx + 4 (wg. sizeof(c) = 4)

cmp r3, r0 @ Schleife beenden

blt .Lloop @ i < N: Continue

mov r0, r5
pop {r4, r5, r6, r8}
bx lr

.endfunc



#include<stdio.h>

extern int do_mul(int N, int c[], int x[]);

int main() {
int c[10], int x[10];
int count, res;

// ... Arrays initialisieren ...

res = do_mul(10, c, x);

printf("Result: %d\n", res);

return(0);
}



▶
▶ unsigned strnlen(char* string, unsigned n)

▶
▶
▶



.data

.balign 4
string: .asciz "Das ist ein Teststring!"



.text

.balign 4

.global strnlen

.func strnlen
strnlen:

@ Parameter: Pointer auf String (r0), maximale Laenge (r1)

@ Rueckgabewert: String-Laenge in r0

@ Lokale Variablen: Aktuelles Byte (r2), Laenge (r3)

mov r3, #-1 @ Laenge auf -1 initialisieren

.Liter:
add r3, r3, #1 @ Laenge weiterzaehlen

ldrb r2, [r0], #1 @ Naechstes Byte laden, post-inkrement

cmp r3, r1 @ Maximale Laenge erreicht?

cmpne r2, #0 @ Nein: Byte gleich Nullbyte?

bne .Liter @ Nein: Weiterzaehlen

mov r0, r3 @ Ja: Laenge zurueckgeben

bx lr
.endfunc



▶
▶

▶
▶

▶
▶

▶
▶
▶



▶ ldc stc

▶ mcr mcrr

▶ mrc mrrc

▶ cdp

▶ 2 ldr2 mrrc2

▶
▶
▶



▶
▶
▶
▶
▶

void do_float() {
volatile float d1, d2, d3;
d1 = 3.01;
d2 = 17.99;

d3 = d1*d2;
}



(...)
volatile float d1, d2, d3;

d1 = 3.01;

4: ldr r3, [pc, #32] ; 2c <do_float+0x2c>
8: str r3, [sp, #4]
d2 = 17.99;

c: ldr r3, [pc, #28] ; 30 <do_float+0x30>
10: str r3, [sp, #8]

d3 = d1*d2;

14: vldr s14, [sp, #4]
18: vldr s15, [sp, #8]
1c: vmul.f32 s15, s14, s15
20: vstr s15, [sp, #12]

(...)
2c: .word 0x4040a3d7
30: .word 0x418feb85



▶

▶

▶

▶

▶

▶

▶



▶
▶
▶





▶
▶

▶



▶

▶

▶

▶



main.c

int buf[2] = {0xdeadbeef,
0xaffe}

int main() {
swap();
return 0;

}

▶ buf main

▶ swap

swap.c

extern int buf[];
int *bufp0 = &buf[0];
static int *bufp1;

void swap() {
int temp;
bufp1 = &buf[1];
temp = *bufp0;
*bufp0 = *bufp1;
*bufp1 = temp;

}

▶ bufp0 swap

▶ bufp1

▶ buf



▶

▶ void func(int a)
{…}

▶ func(17)
▶ int *ptr; int var;
ptr = &var;

▶

▶

▶

▶

▶



▶ file.o
▶
▶
▶
▶
.h

▶ a.out
▶
▶

_start

▶ file.so file.dll
▶
▶
▶ ld.so dlopen(), dlsym()



▶ nm main.o nm swap.o
▶ D
▶ T
▶ U
▶ B
▶

▶ objdump -r -t -d -z -S main.o -j.text -j.data

▶ objdump -r -t -d -z -S swap.o -j.text -j.data

▶ objdump -r -t -d -z -S main -j.text -j.data



add
sub

▶
▶
▶

R_ARM_CALL

▶
▶
▶



R_ARM_CALL

// S sei bereits bekannt

A = *P; // Instruktion laden

// Sign Extension 24->30 Bit

if (A & 0x00800000)
A |= 0x3F000000;

A = A << 2; // Konvention fuer Branch-Instruktion; jetzt 32 Bit

tmp = S + A - P; // Relokation R_ARM_CALL

// Skalieren und untere 24 Bits auswaehlen

tmp = (tmp >> 2) & 0x00FFFFFF;
*P = (*P & 0xFF000000) | tmp; // Immediate zurueckschreiben



▶
▶

▶
▶
▶

▶
▶
▶

▶



▶ ar

▶ ld collect2

▶
▶
▶
▶



▶
▶
▶

▶ ☞

▶ lib.so lib.dll

▶
▶



Compiler 

(cpp, cc1, as)

main2.c

main2.o

libc.so

libvector.so

Binder (ld)

p2

Dynamischer Binder 

(ld-linux.so)

Relokationsinfo und

Symboltabellen

libc.so

libvector.so

Code und Daten

Relozierbare

Objektdateien

vector.h

Laden 

(execve)



dlopen() dlsym

void *handle;
void (*fun)(int, int, int*);

// Keine Fehlerbehandlung - siehe man-pages fuer die

// entsprechenden Details

handle = dlopen("libsepp.so", RTLD_LAZY); // Shared Objekt laden

fun = dlsym(handle, "hypertrichter"); // Funktion suchen

int res;
fun(1,7, &res); // Aufgerufen wird hypertricher()



▶
▶

▶
▶



eins.c zwei.c
func() {...} func() {...}
int x; int x; x
u16 x; u16 y; u32 x; zwei.c:x

eins.c:y
u16 x=0; u16 y=0; u32 x; zwei.c:x

eins.c:y



▶

▶
▶
▶

▶

▶



readelf

▶ readelf -h

▶ readelf -S

▶ readelf -r

▶ readelf -l
▶

▶ .symtab
▶ .strtab
▶ .hash

▶



struct Elf32_Sym {
Elf32_Word st_name; // Symbol name (index into string

table)

Elf32_Addr st_value; // Value or address associated with

// the symbol

Elf32_Word st_size; // Size of the symbol

unsigned char st_info; // Symbol's type and binding

attributes

unsigned char st_other; // Must be zero; reserved

Elf32_Half st_shndx; // Which section (header table

index)

// it's defined in

}





▶
▶

▶

▶
▶
▶
▶

▶



▶
▶

▶
▶
▶



▶
▶
▶

▶
▶
▶
▶

▶
▶



▶
▶
▶ ☞

▶
▶ ☞
▶ ☞ INT ☞ CHAR

▶ ☞ NUM 1.234



▶
a*b+c

▶ a**b**c a**b**c



▶
a*b+c

▶ a**b**c a**b**c



▶

▶



▶

▶



▶
▶
▶
▶



enum arith_op {
TIMES, DIV, PLUS,
MINUS, EXP, NUMBER

};

typedef struct expression {
enum arith_op op;

union {
int value;

// Rechenoperation

struct {
struct expression *left;
struct expression *right;

} operands;
};

} expression_t;



▶
▶
▶
▶

▶
▶

▶
▶
▶





enum arith_op {
TIMES, DIV, PLUS,
MINUS, EXP, NUMBER

};

enum arith_type {
INTEGER, FLOAT,
UNDETERMINED

};

typedef struct expression {
enum arith_op op;
enum arith_type type;

union {
// Zahl (Konstante)

union {
int ival;
float fval;

} value;

// Rechenoperation

struct {
struct expression *left;
struct expression *right;

} operands;
};

} expression_t;



enum arith_type annotate_tree(expression_t *e) {
if (e->type == UNDETERMINED) {
enum arith_type lhs, rhs;
lhs = annotate_tree(e->operands.left);
rhs = annotate_tree(e->operands.right);

// Beide Unterausdruecke Ganzzahlen: Gemeinsamer

// Ausdruck wird Ganzzahl, anderenfalls Gleitkommazahl

if (lhs == rhs && lhs == INTEGER) {
e->type = INTEGER;

} else {
e->type = FLOAT;

}
}

// Knoten jetzt sicher mit einem Typ annotiert

return(e->type);
}



▶
▶

NUMBER [0-9]+
FLOAT [0-9]*\.[0-9]+
DOUBLE [0-9]*\.[0-9]+d
WS [ \r\n\t]*
%%
{WS} { /* Leerzeichen ignorieren */ }
{NUMBER} { sscanf(yytext, "%d", &yylval->value_int);

return TOKEN_NUMBER; }
{FLOAT} { sscanf(yytext, "%f", &yylval->value_float);

return TOKEN_FLOAT; }
{TIMES} { return TOKEN_TIMES; }
{DIV} { return TOKEN_DIV; }
(...)
{RPAREN} { return TOKEN_RPAREN; }



▶ ☞
▶
▶ $$ $ n

expr:
expr TOKEN_PLUS expr { $$ = create_ast_node(PLUS, $1, $3); }

| expr TOKEN_MINUS expr { $$ = create_ast_node(MINUS, $1, $3); }
| expr TOKEN_TIMES expr { $$ = create_ast_node(TIMES, $1, $3); }
| expr TOKEN_DIV expr { $$ = create_ast_node(DIV, $1, $3); }
| expr TOKEN_EXP expr { $$ = create_ast_node(EXP, $1, $3); }
| TOKEN_LPAREN expr TOKEN_RPAREN { $$ = $2; }
| TOKEN_NUMBER { $$ = create_integer($1); }
| TOKEN_FLOAT { $$ = create_float($1); }
;



expression_t *create_ast_node(enum arith_op t,
expression_t *lop,
expression_t *rop) {

expression_t *e = (expression_t*)malloc(sizeof(expression_t));

e->op = t;
e->type = UNDETERMINED;
e->operands.left = lop;
e->operands.right = rop;
return(e);

}

expression_t *create_integer(int number) {
expression_t *e = (expression_t*)malloc(sizeof(expression_t));

e->op = NUMBER; e->type = INTEGER;
e->value.ival = number;
return(e);

}



▶

▶
▶
▶

▶
▶
▶
▶



▶
▶

▶
▶

▶
▶

▶ add mul





void emit_expression(enum arith_op op, unsigned reg1,
unsigned reg2) {

switch(op) {
case PLUS:
printf("add r%u, r%u, r%u\n", reg1, reg1, reg2);
break;

case MINUS:
printf("sub r%u, r%u, r%u\n", reg1, reg1, reg2);
break;

...
}

}



mov r0, #1
mov r1, #2
add r0, r0, r1

mov r1, #3
add r0, r0, r1

mov r0, #1

mov r1, #2
mov r2, #3
mul r1, r1, r2
add r0, r0, r1



mov r0, #1
mov r1, #2
mul r0, r0, r1

mov r1, #3

mov r2, #4
mov r3, #5
add r2, r2, r3

mul r1, r1, r2
add r0, r0, r1



▶
▶
▶

▶
▶
▶





▶ push {r0, r1, …, r
max

}

▶ pop

▶
▶



▶ push {r0, r1, …, r
max

}

▶ pop

▶
▶



▶
▶
▶
▶

▶

▶
▶

▶
▶



▶
▶
▶ ☞

▶
▶
▶
▶

▶
▶
▶



▶
▶
▶

▶ f() f()
▶

▶



int f(int n) {
if (n == 0)
return(1);

else

return(n*f(n-1));
}

f: stmfd sp!, {r4, lr}
subs r4, r0, #0
beq .L3
sub r0, r4, #1
bl f
mul r0, r4, r0
ldmfd sp!, {r4, pc}

.L3: mov r0, #1
ldmfd sp!, {r4, pc}

f: subs r3, r0, #0
mov r0, #1
beq .L4

.L3: mul r0, r3, r0
subs r3, r3, #1
bne .L3
bx lr

.L4: bx lr





▶
▶ ☞
▶

▶
▶

▶ ☞ ☞ ☞ ☞ ☞

▶
▶
▶



▶
▶
▶



▶

▶ ☞

▶

▶

▶

▶

▶

▶

▶

▶



▶
▶
▶

▶
▶
▶

▶

▶



RAM-Speicher
E/A

Bridge
Bus-Schnittstelle

ALU

Register

CPU (Chip)

Systembus Speicherbus



▶
▶

▶
▶
▶

▶
▶



▶ ldr r1, [#A]

▶

▶

▶

▶ str r1, [#A]

▶

▶

▶

▶



▶

▶

▶

▶
▶
▶
▶

▶

▶



▶
▶
▶

▶

Spindle

Surface

Tracks

Trackk

Sectors

Gaps



▶
▶
▶

▶

Surface0

Surface1

Surface2

Surface3

Surface4

Surface5

Cylinderk

Spindle

Platter0

Platter1

Platter2



▶

▶

▶

▶

▶

▶

▶



Nach blauer Leseoperation Seek nach rot Rotationslatenz Nach roter Leseoperation

▶
▶

▶
▶



▶
▶
▶

▶
▶
▶

▶
▶



▶

▶

▶

▶

▶

▶ ☞

▶
▶

☞

▶

▶



Hauptspeicher
E/A

Bridge
Bus-Schnittstelle

ALU

Register

CPU

System-Bus Speicherbus

Festplatten-ControllerGraphikkarteUSB-Controller

E/A-Bus

Erweiterungsslots (bsp.

Netzwerkkarten, SCSI, …)



Hauptspeicher
E/A

Bridge
Bus-Schnittstelle

ALU

Register

CPU

System-Bus Speicherbus

Festplatten-ControllerGraphikkarteUSB-Controller

E/A-Bus

Erweiterungsslots (bsp.

Netzwerkkarten, SCSI, …)



Hauptspeicher
E/A

Bridge
Bus-Schnittstelle

ALU

Register

CPU

System-Bus Speicherbus

Festplatten-ControllerGraphikkarteUSB-Controller

E/A-Bus

Erweiterungsslots (bsp.

Netzwerkkarten, SCSI, …)



Hauptspeicher
E/A

Bridge
Bus-Schnittstelle

ALU

Register

CPU

System-Bus Speicherbus

Festplatten-ControllerGraphikkarteUSB-Controller

E/A-Bus

Erweiterungsslots (bsp.

Netzwerkkarten, SCSI, …)



▶
▶
▶
▶
▶ ☞



▶
▶

▶
▶
▶
▶



Flash-Übersetzungsschicht

(translation layer)

I/O bus

Seite (Page) 0 Page 1 Page P-1…

Block 0

… Page 0 Page 1 Page P-1…

Block  B-1

Flash-Speicher

Solid State Disk (SSD)

Lese/Schreibanforderungen

für logische Blocks







int do_sum(int *arr,
unsigned int N) {

int sum = 0;

for (int i=0; i < N; i++) {
sum += arr[i];

}

return sum;
}

▶
▶

▶ sum

▶
▶

▶



int sum_all(int *a,
unsigned M,
unsigned N) {

int i, j, sum = 0;
for (i = 0; i < M; i++) {
for (j = 0; j < N; j++) {
sum += a[i][j];

}
}

return sum;
}

int sum_all(int *a,
unsigned M,
unsigned N) {

int i, j, sum = 0;
for (i = 0; i < M; i++) {
for (j = 0; j < N; j++) {
sum += a[j][i];

}
}

return sum;
}

a[i][j] *a + i*M + j



▶
▶
▶
▶



Register

L1-Cache

(SRAM)

Hauptspeicher

(DRAM)

Lokaler Sekundärspeicher

(Festplatten)

Größer,

langsamer,

billiger

Entfernter Sekundärspeicher

(Magnetbänder, Netzwerkdateisysteme, Web-Caches)

L2-Cache

(SRAM)

L0:

L1:

L2:

L3:

L4:

L5:

Kleiner,

schneller,

teurer



RAM
E/A-

Bridge
Busschnittstelle

ALU

Register

Prozessor

System-Bus Speicherbus

Cache-

Speicher



▶
▶
▶
▶
▶
▶ ☞

▶



▶

▶



0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

4

4

4

10

10

10 ▶

▶
▶

☞

▶



▶

▶
▶

▶
▶
▶

▶





▶
▶
▶
▶
▶



▶
▶
▶
▶

▶
▶
▶

▶



E = 2
e 

Zeilen pro Set

2
s
 Sets

Set

Zeile

0 1 2 B-1Tagv

B = 2
b 

 Bytes pro Cache-Block (Daten)

Valid-Bit



▶
▶

▶
▶

▶

t Bits s Bits b Bits

Speicheradresse

Tag Set Block



S = 2
s 

Sets

0 1 2 7Tagv 3 654

0 1 2 7Tagv 3 654

0 1 2 7Tagv 3 654

0 1 2 7Tagv 3 654

▶
▶



t bits 0…01 100

Speicheradresse

0 1 2 7tagv 3 654

Tags identisch: Cache-HitGültig?   +

Block-Offset

tag

▶
▶





▶
▶
▶ ☞
▶



t Bits 0…01 100

Speicheradresse

0 1 2 7Tagv 3 654 0 1 2 7Tagv 3 654

0 1 2 7Tagv 3 654 0 1 2 7Tagv 3 654

0 1 2 7Tagv 3 654 0 1 2 7Tagv 3 654

0 1 2 7Tagv 3 654 0 1 2 7Tagv 3 654

Set

identifiziert

▶
▶

▶
▶

▶

▶
▶



t Bits 0…01 100

Speicheradresse

0 1 2 7tagv 3 654 0 1 2 7Tagv 3 654

Vergleich

Gültig?  + Tag identisch: Cache-Hit

Offset

Tag

▶
▶

▶
▶

▶

▶
▶



▶

▶

▶

▶
▶

▶

▶

▶



▶
▶
▶
▶
▶
▶



▶
▶
▶ ☞

▶

▶

▶

▶



▶
▶
▶

▶

▶

▶
▶

▶
▶

▶



▶
▶
▶

▶

▶
▶
▶



▶
▶

▶

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
sum = 0;
for (k=0; k<N; k++) {
sum +=
a[i][k] * b[k][j];

}
c[i][j] = sum;

}
}



▶
▶
▶



type sum;
for (i = 0; i < N; ++i) {

sum += a[K][i];
}

▶
▶

▶

type sum;
for (i = 0; i < N; ++i) {

sum += a[i][K];
}

▶
▶



for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
sum = 0;
for (k=0; k<N; k++) {
sum +=
a[i][k] * b[k][j];

}
c[i][j] = sum;

}
}

A B C

(i,*)

(*,j)

(i,j)

SpaltenweiseZeilenweise Fix



for (k=0; k<N; k++) {
for (i=0; i<N; i++) {
r = a[i][k];
for (j=0; j<N; j++) {
c[i][j] += r * b[k][j];

}
}

}

A B C

(i,*)

(i,k) (k,*)

Zeilenweise ZeilenweiseFix



for (j=0; j<N; j++) {
for (k=0; k<N; k++) {
r = b[k][j];
for (i=0; i<N; i++) {
c[i][j] += r * a[i][k];

}
}

}

A B C

(*,j)

(k,j)

(*,k)

Spaltenweise SpaltenweiseFix
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concept. Figure 1-1 provides a rough initial overview about the layers that comprise a complete Linux
system, and also about some important subsystems of the kernel as such. Notice, however, that the
individual subsystems will interact in a variety of additional ways in practice that are not shown in the
figure.

Applications

Userspace

C Library

Kernel space

Hardware

Device
driversCore kernel

System Calls

Networking Device Drivers

FilesystemsVFS

Memory mgmt

Architecture specific code

Process mgmt

Figure 1-1: High-level overview of the structure of the Linux kernel and the
layers in a complete Linux system.

1.3.1 Processes, Task Switching, and Scheduling
Applications, servers, and other programs running under Unix are traditionally referred to as processes.
Each process is assigned address space in the virtual memory of the CPU. The address spaces of the indi-
vidual processes are totally independent so that the processes are unaware of each other — as far as each
process is concerned, it has the impression of being the only process in the system. If processes want to
communicate to exchange data, for example, then special kernel mechanisms must be used.

Because Linux is a multitasking system, it supports what appears to be concurrent execution of several
processes. Since only as many processes as there are CPUs in the system can really run at the same
time, the kernel switches (unnoticed by users) between the processes at short intervals to give them the
impression of simultaneous processing. Here, there are two problem areas:

1. The kernel, with the help of the CPU, is responsible for the technical details of task switch-
ing. Each individual process must be given the illusion that the CPU is always available. This
is achieved by saving all state-dependent elements of the process before CPU resources are
withdrawn and the process is placed in an idle state. When the process is reactivated, the
exact saved state is restored. Switching between processes is known as task switching.

2. The kernel must also decide how CPU time is shared between the existing processes. Impor-
tant processes are given a larger share of CPU time, less important processes a smaller share.
The decision as to which process runs for how long is known as scheduling.

1.3.2 UNIX Processes
Linux employs a hierarchical scheme in which each process depends on a parent process. The kernel
starts the init program as the first process that is responsible for further system initialization actions
and display of the login prompt or (in more widespread use today) display of a graphical login interface.
init is therefore the root from which all processes originate, more or less directly, as shown graphically

4
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of the kernel. This mechanism prevents processes from interfering with each other by unintentionally
influencing each other’s data.

1

0

2
3

Kernel- 
mode

User- 
mode

Less 
Privileges

IA-32 Linux

Figure 1-4: Ring system of privilege levels.

The switch from user to kernel mode is made by means of special transitions known as system calls; these
are executed differently depending on the system. If a normal process wants to carry out any kind of
action affecting the entire system (e.g., manipulating I/O devices), it can do this only by issuing a request
to the kernel with the help of a system call. The kernel first checks whether the process is permitted to
perform the desired action and then performs the action on its behalf. A return is then made to user mode.

Besides executing code on behalf of a user program, the kernel can also be activated by asynchronous
hardware interrupts, and is then said to run in interrupt context. The main difference to running in process
context is that the userspace portion of the virtual address space must not be accessed. Because interrupts
occur at random times, a random userland process is active when an interrupt occurs, and since the
interrupt will most likely be unconnected with the cause of the interrupt, the kernel has no business
with the contents of the current userspace. When operating in interrupt context, the kernel must be more
cautious than normal; for instance, it must not go to sleep. This requires extra care when writing interrupt
handlers and is discussed in detail in Chapter 2. An overview of the different execution contexts is given
in Figure 1-5.

Besides normal processes, there can also be kernel threads running on the system. Kernel threads are also
not associated with any particular userspace process, so they also have no business dealing with the
user portion of the address space. In many other respects, kernel threads behave much more like regular
userland applications, though: In contrast to a kernel operating in interrupt context, they may go to sleep,
and they are also tracked by the scheduler like every regular process in the system. The kernel uses them
for various purposes that range from data synchronization of RAM and block devices to helping the
scheduler distribute processes among CPUs, and we will frequently encounter them in the course of this
book.

Notice that kernel threads can be easily identified in the output of ps because their names are placed
inside brackets:

wolfgang@meitner> ps fax
PID TTY STAT TIME COMMAND
2 ? S< 0:00 [kthreadd]
3 ? S< 0:00 _ [migration/0]
4 ? S< 0:00 _ [ksoftirqd/0]
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❑ Most processes are normal processes that have no specific time constraints but can still be classified
as more important or less important by assigning priorities to them.

For example, a long compiler run or numerical calculations need only very low priority because
it is of little consequence if computation is interrupted occasionally for a second or two — users
are unlikely to notice. In contrast, interactive applications should respond as quickly as possible
to user commands because users are notoriously impatient.

The allocation of CPU time can be portrayed in much simplified form as in Figure 2-1. Processes are
spread over a time slice, and the share of the slice allocated to them corresponds to their relative impor-
tance. The time flow in the system corresponds to the turning of the circle, and the CPU is represented by
a ‘‘scanner‘‘ at the circumference of the circle. The net effect is that important processes are granted more
CPU time than less important processes, although all eventually have their turn.

CPU

A

B

C

D

Figure 2-1: Allocation of CPU time by means of
time slices.

In this scheme, known as preemptive multitasking, each process is allocated a certain time period during
which it may execute. Once this period has expired, the kernel withdraws control from the process and
lets a different process run — regardless of the last task performed by the previous process. Its runtime
environment — essentially, the contents of all CPU registers and the page tables — is, of course, saved
so that results are not lost and the process environment is fully reinstated when its turn comes around
again. The length of the time slice varies depending on the importance of the process (and therefore
on the priority assigned to it). Figure 2-1 illustrates this by allocating segments of different sizes to the
individual processes.

This simplified model does not take into account several important issues. For example, processes may
not be ready to execute at certain times because they have nothing to do. Because it is essential to use
CPU time as profitably as possible, such processes must be prevented from executing. This is not evident
in Figure 2-1 because it is assumed that all processes are always ready to run. Also ignored is the fact
that Linux supports different scheduling classes (completely fair scheduling between processes, and real-
time scheduling), and these must also be taken into consideration during scheduling. Neither is there an
option to replace the current process with an important process that has become ready to run.

Note that process scheduling causes very fervid and excited discussion among kernel developers, espe-
cially when it comes to picking the best possible algorithm. Finding a quantitative measure for the quality
of a scheduler is a very hard — if not impossible — task. It is also a very challenging task for a sched-
uler to fulfill the requirements imposed by the many different workloads that Linux systems have to
face: Small embedded systems for automated control usually have very different requirements than large
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Modules can also be unloaded from the kernel at run time, a useful aspect when developing new kernel
components.

Virtual file system

System calls

ExtN

Block layer Device drivers

XFS ProcFS

Page cache Buffer cache

Applications and Libc

Various subsystems

Hard disks

Figure 1-10: Overview of how the virtual filesystem layer,
filesystem implementations, and the block layer
interoperate.

Basically, modules are simply normal programs that execute in kernel space rather than in userspace.
They must also provide certain sections that are executed when the module is initialized (and terminated)
in order to register and de-register the module functions with the kernel. Otherwise, module code has
the same rights (and obligations) as normal kernel code and can access all the same functions and data as
code that is permanently compiled into the kernel.

Modules are an essential requisite to support for hotplugging. Some buses (e.g., USB and FireWire) allow
devices to be connected while the system is running without requiring a system reboot. When the sys-
tem detects a new device, the requisite driver can be automatically added to the kernel by loading the
corresponding module.

Modules also enable kernels to be built to support all kinds of devices that the kernel can address without
unnecessarily bloating kernel size. Once attached hardware has been detected, only the requisite modules
are loaded, and the kernel remains free of superfluous drivers.

A long-standing issue in the kernel community revolves around the support of binary-only modules,
that is, modules for which no source code is available. While binary-only modules are omnipresent
on most proprietary operating systems, many kernel developers see them (at least!) as an incarnation
of the devil: Since the kernel is developed as open-source software, they believe that modules should
also be published as open source, for a variety of both legal and technical reasons. There are, indeed,
strong arguments to support this reasoning (and besides, I also follow these), but they are not shared by
some commercial companies that tend to think that opening up their driver sources would weaken their
business position.

It is currently possible to load binary-only modules into the kernel, although numerous restrictions apply
for them. Most importantly, they may not access any functions that are explicitly only made available to
GPL-licensed code. Loading a binary-only module taints the kernel, and whenever something bad occurs,
the fault is naturally attributed to the tainting module. If a kernel is tainted, this will be marked on crash
dumps, for instance, and kernel developers will be very unsupportive in solving the issue that led to
the crash — since the binary module could have given every part of the kernel a good shaking, it cannot
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0

TASK_SIZE

232 respectively 264

Userspace

Kernel- 
space

Figure 1-3: Division of virtual
address space.

Every user process in the system has its own virtual address range that extends from 0 to TASK_SIZE.
The area above (from TASK_SIZE to 232 or 264) is reserved exclusively for the kernel — and may not be
accessed by user processes. TASK_SIZE is an architecture-specific constant that divides the address space
in a given ratio — in IA-32 systems, for instance, the address space is divided at 3 GiB so that the virtual
address space for each process is 3 GiB; 1 GiB is available to the kernel because the total size of the virtual
address space is 4 GiB. Although actual figures differ according to architecture, the general concepts do
not. I therefore use these sample values in our further discussions.

This division does not depend on how much RAM is available. As a result of address space virtualization,
each user process thinks it has 3 GiB of memory. The userspaces of the individual system processes are
totally separate from each other. The kernel space at the top end of the virtual address space is always
the same, regardless of the process currently executing.

Notice that the picture can be more complicated on 64-bit machines because these tend to use less than
64 bits to actually manage their huge principal virtual address space. Instead of 64 bits, they employ
a smaller number, for instance, 42 or 47 bits. Because of this, the effectively addressable portion of the
address space is smaller than the principal size. However, it is still larger than the amount of RAM that
will ever be present in the machine, and is therefore completely sufficient. As an advantage, the CPU can
save some effort because less bits are required to manage the effective address space than are required
to address the complete virtual address space. The virtual address space will contain holes that are not
addressable in principle in such cases, so the simple situation depicted in Figure 1-3 is not fully valid. We
will come back to this topic in more detail in Chapter 4.

Privilege Levels
The kernel divides the virtual address space into two parts so that it is able to protect the individual
system processes from each other. All modern CPUs offer several privilege levels in which processes can
reside. There are various prohibitions in each level including, for example, execution of certain assembly
language instructions or access to specific parts of virtual address space. The IA-32 architecture uses a
system of four privilege levels that can be visualized as rings. The inner rings are able to access more
functions, the outer rings less, as shown in Figure 1-4.

Whereas the Intel variant distinguishes four different levels, Linux uses only two different modes —
kernel mode and user mode. The key difference between the two is that access to the memory area above
TASK_SIZE — that is, kernel space — is forbidden in user mode. User processes are not able to manipulate
or read the data in kernel space. Neither can they execute code stored there. This is the sole domain
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Process A

RAM

Process B

Page Frame

Figure 1-6: Virtual and physical addresses.

The arrows in Figure 1-6 indicate how the pages in the virtual address spaces are distributed across the
physical pages. For example, virtual page 1 of process A is mapped to physical page 4, while virtual
page 1 of process B is mapped to the fifth physical page. This shows that virtual addresses change their
meaning from process to process.

Physical pages are often called page frames. In contrast, the term page is reserved for pages in virtual
address space.

Mapping between virtual address spaces and physical memory also enables the otherwise strict sep-
aration between processes to be lifted. Our example includes a page frame explicitly shared by both
processes. Page 5 of A and page 1 of B both point to the physical page frame 5. This is possible because
entries in both virtual address spaces (albeit at different positions) point to the same page. Since the ker-
nel is responsible for mapping virtual address space to physical address space, it is able to decide which
memory areas are to be shared between processes and which are not.

The figure also shows that not all pages of the virtual address spaces are linked with a page frame. This
may be because either the pages are not used or because data have not been loaded into memory because
they are not yet needed. It may also be that the page has been swapped out onto hard disk and will be
swapped back in when needed.

Finally, notice that there are two equivalent terms to address the applications that run on behalf of the
user. One of them is userland, and this is the nomenclature typically preferred by the BSD community for
all things that do not belong to the kernel. The alternative is to say that an application runs in userspace. It
should be noted that the term userland will always mean applications as such, whereas the term userspace
can additionally not only denote applications, but also the portion of the virtual address space in which
they are executed, in contrast to kernel space.

1.3.4 Page Tables
Data structures known as page tables are used to map virtual address space to physical address space. The
easiest way of implementing the association between both would be to use an array containing an entry
for each page in virtual address space. This entry would point to the associated page frame. But there is
a problem. IA-32 architecture uses, for example, 4 KiB pages — given a virtual address space of 4 GiB,
this would produce an array with a million entries. On 64-bit architectures, the situation is much worse.
Because each process needs its own page tables, this approach is impractical because the entire RAM of
the system would be needed to hold the page tables.
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Figure 2-2 shows several process states and transitions.

Running

Stopped

Waiting Sleeping

5

4

2

1

3

Figure 2-2: Transitions between process states.

Let’s start our examination of the various transitions with a queued runnable process; the process is
ready to run but is not allowed to because the CPU is allocated to a different process (its state is therefore
‘‘waiting‘‘). It remains in this state until the scheduler grants it CPU time. Once this happens, its state
changes to ‘‘running‘‘ (path 4).

When the scheduler decides to withdraw CPU resources from the process — I deal with the possible rea-
sons why shortly — the process state changes from ‘‘running‘‘ to ‘‘waiting‘‘ (path 2), and the cycle starts
anew. There are, in fact, two ‘‘sleeping‘‘ states that differ according to whether they can be interrupted
by signals or not. At the moment, this difference is not important, but it is of relevance when we examine
implementation more closely.

If the process has to wait for an event, its state changes (path 1) from ‘‘running‘‘ to ‘‘sleeping.’’ However,
it cannot change directly from ‘‘sleeping‘‘ to ‘‘running‘‘; once the event it was waiting for has taken place,
the process changes back to the ‘‘waiting‘‘ state (path 3) and then rejoins the normal cycle.

Once program execution terminates (e.g., the user closes the the application), the process state changes
from ‘‘running‘‘ to ‘‘stopped‘‘ (path 5).

A special process state not listed above is the ‘‘zombie‘‘state. As the name suggests, such processes are
defunct but are somehow still alive. In reality, they are dead because their resources (RAM, connections
to peripherals, etc.) have already been released so that they cannot and never will run again. However,
they are still alive because there are still entries for them in the process table.

How do zombies come about? The reason lies in the process creation and destruction structure under
Unix. A program terminates when two events occur — first, the program must be killed by another
process or by a user (this is usually done by sending a SIGTERM or SIGKILL signal, which is equivalent
to terminating the process regularly); second, the parent process from which the process originates must
invoke or have already invoked the wait4 (read: wait for) system call when the child process terminates.
This confirms to the kernel that the parent process has acknowledged the death of the child. The system
call enables the kernel to free resources reserved by the child process.

A zombie occurs when only the first condition (the program is terminated) applies but not the second
(wait4). A process always switches briefly to the zombie state between termination and removal of its
data from the process table. In some cases (if, e.g., the parent process is badly programmed and does
not issue a wait call), a zombie can firmly lodge itself in the process table and remain there until the next
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5 ? S< 0:00 _ [migration/1]
6 ? S< 0:00 _ [ksoftirqd/1]
7 ? S< 0:00 _ [migration/2]
8 ? S< 0:00 _ [ksoftirqd/2]
9 ? S< 0:00 _ [migration/3]

10 ? S< 0:00 _ [ksoftirqd/3]
11 ? S< 0:00 _ [events/0]
12 ? S< 0:00 _ [events/1]
13 ? S< 0:00 _ [events/2]
14 ? S< 0:00 _ [events/3]
15 ? S< 0:00 _ [khelper]

...
15162 ? S< 0:00 _ [jfsCommit]
15163 ? S< 0:00 _ [jfsSync]

System call Return from
system call

Must not be
accessedUser

Kernel

Interrupt Arrows indicate that
CPU executes here( )

Figure 1-5: Execution in kernel and user mode. Most of the time, the CPU executes
code in userspace. When the application performs a system call, a switch to kernel
mode is employed, and the kernel fulfills the request. During this, it may access the
user portion of the virtual address space. After the system call completes, the CPU
switches back to user mode. A hardware interrupt also triggers a switch to kernel
mode, but this time, the userspace portion must not be accessed by the kernel.

On multiprocessor systems, many threads are started on a per-CPU basis and are restricted to run on
only one specific processor. This is represented by a slash and the number of the CPU that are appended
to the name of the kernel thread.

Virtual and Physical Address Spaces
In most cases, a single virtual address space is bigger than the physical RAM available to the system. And
the situation does not improve when each process has its own virtual address space. The kernel and CPU
must therefore consider how the physical memory actually available can be mapped onto virtual address
areas.

The preferred method is to use page tables to allocate virtual addresses to physical addresses. Whereas
virtual addresses relate to the combined user and kernel space of a process, physical addresses are used
to address the RAM actually available. This principle is illustrated in Figure 1-6.

The virtual address spaces of both processes shown in the figure are divided into portions of equal size
by the kernel. These portions are known as pages. Physical memory is also divided into pages of the
same size.
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As most areas of virtual address spaces are not used and are therefore not associated with page frames, a
far less memory-intensive model that fulfills the same purpose can be used: multilevel paging.

To reduce the size of page tables and to allow unneeded areas to be ignored, the architectures split each
virtual address into multiple parts, as shown in Figure 1-7 (the bit positions at which the address is split
differ according to architecture, but this is of no relevance here). In the example, I use a split of the virtual
address into four components, and this leads to a three-level page table. This is what most architectures
offer. However, some employ four-level page tables, and Linux also adopts four levels of indirection. To
simplify the picture, I stick to a three-level variant here.

PGD PTEPMD Offset

Global Page 
Table

+

Middle Page 
Table

Page Table

Virtual 
Address

+

+

Page Frame

+

Figure 1-7: Splitting a virtual address.

The first part of the virtual address is referred to as a page global directory or PGD. It is used as an index
in an array that exists exactly once for each process. Its entries are pointers to the start of further arrays
called page middle directories or PMD.

Once the corresponding array has been found by reference to the PGD and its contents, the PMD is used
as an index for the array. The page middle directory likewise consists of pointers to further arrays known
as page tables or page directories.

The PTE (or page table entry) part of the virtual address is used as an index to the page table. Mapping
between virtual pages and page frames is achieved because the page table entries point to page frames.

The last part of the virtual address is known as an offset. It is used to specify a byte position within the
page; after all, each address points to a uniquely defined byte in address space.

A particular feature of page tables is that no page middle tables or page tables need be created for areas of
virtual address space that are not needed. This saves a great deal of RAM as compared to the single-array
method.

Of course, this method also has a downside. Each time memory is accessed, it is necessary to run through
the entire chain to obtain the physical address from the virtual address. CPUs try to speed up this process
in two ways:

1. A special part of the CPU known as a memory management unit (MMU) is optimized to per-
form referencing operations.

12
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24 Chapter 2 ARM Processor Fundamentals

User and
system

Fast
interrupt
request

Interrupt
request Supervisor Undefined Abort

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13 sp
r14 lr
r15 pc

cpsr
-

r8_ fiq
r9_ fiq
r10_ fiq
r11_ fiq
r12_ fiq
r13_ fiq
r14_ fiq

spsr_ fiq

r13_irq
r14_irq

spsr_irq

r13_svc
r14_svc

spsr_svc

r13_undef
r14_undef

spsr_undef

r13_abt
r14_abt

spsr_abt

Figure 2.4 Complete ARM register set.

mode; for example, abort mode has banked registers r13_abt, r14_abt and spsr_abt. Banked
registers of a particular mode are denoted by an underline character post-fixed to the mode
mnemonic or _mode.

Every processor mode except user mode can change mode by writing directly to the
mode bits of the cpsr. All processor modes except system mode have a set of associated
banked registers that are a subset of the main 16 registers. A banked register maps one-to-
one onto a user mode register. If you change processor mode, a banked register from the
new mode will replace an existing register.

For example, when the processor is in the interrupt request mode, the instructions you
execute still access registers named r13 and r14. However, these registers are the banked
registers r13_irq and r14_irq. The user mode registers r13_usr and r14_usr are not affected
by the instruction referencing these registers. A program still has normal access to the other
registers r0 to r12.

The processor mode can be changed by a program that writes directly to the cpsr (the
processor core has to be in privileged mode) or by hardware when the core responds to
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334 Chapter 9 Exception and Interrupt Handling

Disable interrupts,
pc = vector table entry
spsr_{mode} = cpsr,

1.

Enable interrupts
pc = lr−4
cpsr = spsr_{mode}

6.

2.

3.

4.

Return to
task

Interrupt
handler

Save context

5. Restore
context

Service
interrupt
routine

Interrupt

Figure 9.8 Simple nonnested interrupt handler.

3. Interrupt handler—The handler then identifies the external interrupt source and
executes the appropriate interrupt service routine (ISR).

4. Interrupt service routine—The ISR services the external interrupt source and resets the
interrupt.

5. Restore context—The ISR returns back to the interrupt handler, which restores the
context.

6. Enable interrupts—Finally, to return from the interrupt handler, the spsr_{interrupt
request mode} is restored back into the cpsr. The pc is then set to the next instruction
after the interrupt was raised.

Example
9.8

This IRQ handler example assumes that the IRQ stack has been correctly set up by the
initialization code.
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Disable interrupt

Enable interrupt

1.

2.

3.

4. 5.

6.

7.

8.

9.

10.

11.

Save context

Restore context

Restore context

Prepare stack

Switch to mode

Start constructing
a frame

Service
interrupt

Finish
frame

construction

Complete
servicing

the interrupt

Interrupt

Enter interrupt handler

Complete Not complete

Interrupt

Interrupt

Return to task

Return to task

Figure 9.9 Nested interrupt handler.

Figure 9.9 shows a nested interrupt handler. As can been seen from the diagram, the han-
dler is quite a bit more complicated than the simple nonnested interrupt handler described
in Section 9.3.1.

The nested interrupt handler entry code is identical to the simple nonnested interrupt
handler, except that on exit, the handler tests a flag that is updated by the ISR. The flag
indicates whether further processing is required. If further processing is not required, then
the interrupt service routine is complete and the handler can exit. If further processing is
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are divided into blocks that are occupied by files. How many blocks a particular file occupies depends on
the size of the file contents (and, of course, on the size of the block itself).

Like system memory, which, in the view of the kernel, is divided into pages of equal size and is addressed
by unique numbers or pointers, all hard disk blocks are uniquely identified by a number. This enables
the file metadata stored in the inode structure to be associated with the file contents located in the
data block sections on hard disk. The link between the two is established by storing the addresses of
the data blocks in the inode.

Files do not necessarily occupy successive data blocks (although this would be
desirable for performance reasons) but are spread over the entire hard disk.

A closer examination of this concept quickly reveals a problem. Maximum file size is limited by the
number of block numbers that can be held in the inode structure. If this number is too small, less space is
needed to manage the inode structures, but, at the same time, only small-sized files can be represented.

Increasing the number of blocks in the inode structure does not solve the problem, as the following quick
calculation proves. The size of a data block is 4 KiB. To hold a file comprising 700 MiB, the filesystem
would need approximately 175,000 data blocks. If a data block can be uniquely identified by a 4-byte
number, the inode would need 175,000 × 4 bytes to store the information on all data blocks — this is
impracticable because a large portion of disk space would be given over to storing inode information.
What’s more, most of this space would not be needed by most files, whose average size would be less
than 700 MiB.

This is, of course, an age-old problem and is not Linux-specific. Fortunately, all Unix filesystems includ-
ing Ext2 feature a proven solution known as indirection.5

With indirection, only a few bytes of the inode hold pointers to blocks — just enough to ensure that an
average small-size file can be represented. With larger files, pointers to the individual data blocks are
stored indirectly, as illustrated graphically in Figure 9-4.

12 direct 
data blocks

•

•

•

Data blocksIndirection 
blocks

Inode

Figure 9-4: Simple and double indirection.

5Even the relatively primitive Minix filesystem supports indirection.
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Figure 9-2: Block group of the Second Extended Filesystem.
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Figure 9-3: Boot sector and block groups on a hard disk.

The boot sector is a hard disk area whose contents are automatically loaded by the BIOS and executed
when the system is powered up. It includes a boot loader4 that permits selection of one of the systems
installed on the computer and is also responsible for continuing the boot process. Obviously, this area
must not be filled with filesystem data. Boot loaders are not needed on all systems. On systems where
they are, they are usually located at the beginning of the hard disk so that later partitions are not affected.

The remaining space on the disk is occupied by successive block groups that store filesystem metadata
and the useful data of the individual files. As Figure 9-2 clearly illustrates, each block group contains a
great deal of redundant information. Why does the Ext2 filesystem accept this waste of space? There are
two reasons why the additional space is justified:

❑ If the superblock is destroyed by a system crash, all information on filesystem structure and con-
tents is lost. This information can be recovered only with great difficulty (perhaps not at all by
most users) if redundant copies are available.

❑ By keeping file and management data closer together, the number of movements and associated
travel of the read/write head are reduced, and this improves filesystem performance.

In practice, data are not duplicated in each block group, and the kernel works only with the first copy
of the superblock; generally, this is sufficient. When a filesystem check is performed, the data of the first
superblock are spread over the remaining superblocks, where it can be read in an emergency. Because this
method also consumes a large amount of storage space, later versions of Ext2 adopt the sparse superblock
technique. Superblocks are no longer kept in each block group of the filesystem but are written only to
groups 0 and 1 as well as to all other groups whose ID can be represented as a power of 3, 5, and 7.

The superblock data are cached in memory so that the kernel is not forced to repeatedly read this infor-
mation from hard disk — this is, of course, much faster. The second point made above is also no longer
relevant because seeks between the individual superblock entries are no longer necessary.

Although it was assumed when designing the Ext2 filesystem that the two issues above would have a
strong impact on filesystem performance and security, it was later discovered that this is not the case.
The modifications described above were made for this reason.

4LILO on IA-32, MILO on Alpha, SILO on Sparc, and so on.
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