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ABSTRACT
The prospect of achieving computational speedups by exploiting

quantum phenomena makes the use of quantum processing units

(QPUs) attractive for many algorithmic database problems. Query

optimisation, which concerns problems that typically need to ex-

plore large search spaces, seems like an ideal match for the known

quantum algorithms. We present the first quantum implementation

of join ordering, which is one of the most investigated and funda-

mental query optimisation problems, based on a reformulation to

quadratic binary unconstrained optimisation problems.

Current QPUs are classified as noisy, intermediate scale quantum

computers (NISQ), and are restricted by a variety of limitations

that reduce their capabilities as compared to ideal future quantum

computers, which prevents us from scaling up problem dimensions

and reaching practical utility. To overcome these challenges, our

formulation accounts for specific QPU properties and limitations,

and allows us to trade between solution quality and problem size.

We empirically characterise our method on two state-of-the-art

NISQ approaches (gate-based quantum computing and quantum an-

nealing), and confirm that technological limits are quickly reached.

In contrast to prior work on quantum computing for query optimi-

sation, we go beyond currently available QPUs, and explicitly target

the scalability limitations: Using insights gained from numerical

simulations and our experimental analysis, we identify key criteria

for co-designing QPUs to improve their usefulness for join order-

ing, and show how even relatively minor physical architectural

improvements can result in substantial enhancements. Finally, we

outline a path towards practical utility of custom-designed QPUs,

which we envision as local query optimisation accelerators.
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1 INTRODUCTION
In recent years, quantum computing has attracted substantial atten-

tion in many fields of research, driven by the desire to benefit from

quantum advantage in complex computations. While quantum com-

puting has been studied for decades, the increase in interest aligns

with the accelerating development of quantum computing hard-

ware over the recent years, provided by vendors like as IBM [39],

Rigetti [69], or D-Wave [53], among many others. Moreover, cloud

access to quantum systems has made quantum computing more ac-

cessible to researchers, enabling first experiments on real quantum
processing units (QPU).

In contrast to CPUs, QPUs work with quantum bits, or qubits.
Their mathematical state is exponentially larger than for classical

bits, and they can realise phenomena like quantum superposition,
quantum entanglement or quantum interference [60]. It is widely
believed, given accepted complexity theoretic assumptions, that

quantum systems offer increased computational power over clas-

sical systems [5, 8]. Speedups have been proven formultiple quantum

algorithms [31, 74], and a seminal experiment [6] has demonstrated

quantum advantage on real hardware, even if on an artificially

constructed problem.

Quantum computers (QCs) are also believed to excel at opti-

misation problems that need to determine elements with specific

properties in (exponentially large) search spaces, which is a com-

monly occurring problem in database systems, and particularly

relevant for database query optimisation. However, QCs have so

far seen only meagre adoption in DB research, and multi query

optimisation (MQO) [23, 73, 79] is the only application in query

optimisation that we are aware of, to the best of our knowledge.

In this paper, we investigate the aptitude of quantum computing

for the classic join ordering (JO) problem, which is one of the most

extensively researched and fundamental problems in the field of

query optimisation [47, 55, 58, 59, 76, 80, 86].

However, using state-of-the-art quantum systems comes with

several challenges. It is not possible to simply deploy existing clas-

sical algorithms on QPUs, and problems must instead be addressed

using custom quantum algorithms, or by reformulating them into

certain mathematical descriptions that are unaccustomed in tradi-

tional programming. Moreover, the reformulation needs to consider

the (many) limitations of current QPUs, such as limited quantum

coherence time [68] that restricts the time interval during which a

QPU functions properly for a computation, or the limited amount of

qubits offered by current QPUs that necessitates efficient problem

formulations in not just the overall resource scaling behaviour, but

also in exact details that are usually ignored in complexity analysis.
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These limitations prevent current QPUs, which are classified

as so-called noisy intermediate scale quantum (NISQ) devices [65],

from solving problems of practically relevant dimensions. At the

given time, we do not expect meaningful results for practical JO

problems. Instead, we propose a reformulation of the problem that

accounts for such limitations, provide a formal analysis of bounds,

experimentally analyse the achievable performance on multiple

NISQ machines, and suggest physical improvements for future

QPUs that benefit query optimisation workloads.

Contributions. In detail, our contributions are as follows:

(1) We show how join ordering problems can be solved on QPUs,

providing novel mathematical reformulations that account for

their specific properties and restrictions.

(2) We conduct an extensive experimental analysis for join order-

ing on real QPUs, where we comprehensively consider two

state-of-the-art architectures, and show that fundamental lim-

its are quickly reached when we scale up problem dimensions.

We moreover show how specific parameter configurations, that

provide no issues in a classical context, have a major impact on

the feasibility of using QPUs for join ordering.

(3) To address problem scalability, we formally derive an upper

bound for qubit resource scaling that quantifies all influences.

(4) We specify recommendations for DB-QPU co-design, which

has so far not been addressed by prior research. We combine

insights from numerical simulations and our experimental ana-

lysis, and show how even small architectural improvements

can substantially enhance the feasibility of using QPUs for join

ordering. This paves a way towards practical utility of QPUs in

DB applications, which we envision as local co-processors for

accelerating query processing as illustrated in Fig. 1.

(5) We provide a fully reproducible implementation of our analysis

and problem reformulation. The latter may serve as a basis for

future extensions.

The rest of the paper is structured as follows: We give a very

brief overview on quantum computing foundations in Sec. 2. Con-

sidering architectural limitations of QPUs, we present our approach

for implementing join ordering on QPUs in Sec. 3. We then experi-

mentally evaluate our approach on early-stage QPUs in Sec. 4. In

Sec. 5, we formally derive an upper bound for the number of qubits

required to encode JO problem. In Sec. 6, we analyse extensions

required for future QPUs to solve practical join ordering problems.

After presenting related work in Sec. 7, we conclude in Sec. 8.
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Figure 1: Envisioning a QPU as a co-processor in database
query optimization (adapting from [55]).

2 QUANTUM FOUNDATIONS
Quantum computing is a relatively new computational paradigm,

and prototypical hardware has only recently become available. It

is impossible to provide a complete introduction to the field here,

and we refer to Nielsen and Chuang [60] as seminal textbook, and

Bharti et al. [9] as algorithmic review instead. Nonetheless, since the

approach differs greatly from the customary hardware foundations,

we need to lay the ground for our considerations.

2.1 Quantum Algorithms
Existing classical algorithms cannot be trivially converted to quantum

systems. Instead, a quantum algorithm that computes a quantum

state representing an optimal or near-optimal solution to a problem

with high probability is required. These algorithms fall, broadly

speaking, into two categories: Algorithms with provable speedups

over their classical counterparts that require a fully functioning, er-

ror corrected quantum computer to work, and heuristic approaches

working on hardware that is physically realisable now and in the

medium term future.

The first category includes, for instance, Shor’s seminal factor-

ing algorithm, or Grover search in large, unstructured spaces.
1

The second class contains heuristic approaches that are believed to

optimally use quantum phenomena in non-error corrected, present-

day quantum computers, so-called noisy intermediate scale quantum

(NISQ) machines. Except for notable efforts like supremacy experi-

ments on an artificially constructed problem [6] or a kernel-based

supervised machine learning approach [49], algorithms in this class

do not enjoy a strict proof of computational advantage, or even cur-

rently experimentally verified advantages on available hardware.

The classmostly comprises hybrid variational quantum algorithms:
parameterised quantum gates produce quantum states (using super-

position and entanglement) that are supposed to, roughly speaking,

explore scenarios faster than classical counterparts. Their believed

speedups rest on quantum interference phenomena for gate-based

approaches, and on quantum fluctuations for quantum annealing.

Detailed rationales on why speedups are expected, and the physical

intuition behind, cannot be discussed here for the lack of space.

Instead, we refer to Bharti et al. [9] for gate-based systems, and

Albash and Lidar [3] for quantum annealers.

2.2 QPU Architectures
While physical implementation techniques for quantum computers

vary widely, two conceptual paradigms have emerged that we con-

sider in this work: Gate-based QPUs and quantum annealers. We

outline their essential characteristics, and show the steps required

to solve the JO problem.

2.2.1 Gate-based QPUs. Multiple vendors (e.g., IBM, AQT, IQM,

Rigetti) offer access to early commercial hardware.

Computation Model. Quantum gates operate (conceptually sim-

ilar to electronic gates) on the quantum state represented by a

1
Grover’s algorithm was initially misnamed as database search, albeit the meaning of

database does not match what is considered a typical database: The algorithm works

on conceptual search spaces, not physical data, unless these can be stored in quantum

RAM, whose implementation in quantities even beyond a few quantum bits only is

still a major physical challenge [9],
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collection of qubits. Gates form a quantum circuit that implements

a computation, and forms part of an algorithm.

A single quantum state can be read by a measurement, which

is typically performed at the end of a circuit. Measurements (very

roughly speaking [64]) collapse a quantum state into one of multiple
possible classical states. The outcome follows a probability distri-

bution that depends on quantum state produced by the circuit. A

common algorithmic pattern is to perform operations on an input

state such that a favourable state, representing a solution to a prob-

lem, is obtained with high probability. Typically, circuits are not

just run once, but instead iterate over tens to thousands of shots to
obtain a statistical distribution.

Gate-Based Quantum Optimisation. Our considerations for gate-
basedQPUs rest on the quantum approximate optimisation algorithm
(QAOA) [24] method. It is an iteration-based, hybrid quantum-

classical algorithm. Each QAOA iteration has (1) a quantum step, in

which a parameterised quantum circuit explores the search space

using quantum states, followed by ameasurement, and (2) a classical

step to tune the circuit parameters with a classical numerical optim-

iser, based on the measurement results. The optimised parameters

are used for the next iteration. The quantum circuit consists of

alternating a cost and a mixing operator. The cost operator encodes

the optimisation problem to be solved, and the mixing operator

ensures that the quantum state appropriately explores the search

space. The quantum sequence is of length 2𝑝 , where 𝑝 denotes

the number repetitions of cost and mixing operator. As shown by

Farhi et al. [24], the approximation quality improves as 𝑝 increases.

However, even for 𝑝 = 1, QAOA shows promising experimental

results for some problems [24, 25], and it is know that an efficient

classical algorithm for sampling the output distribution of QAOA

with 𝑝 = 1 would imply a collapse of the polynomial hierarchy [27],

which is seen as clear indicator of possible quantum advantages. It

is still an open research question if and when practical benefits can
be obtained on current hardware. Optimisation (sub-)problems that

can be mapped to QAOA appear frequently in databases, and often

do not concern the payload itself
2
—instead, they address concep-

tual search spaces, for instance for join order optimisation, and are

therefore promising candidates for quantum speedups.

Problem Encoding. QAOA requires problems to be encoded as

an Ising Hamiltonian [24], which is (for our purposes) equivalent

to a quadratic unconstrained binary optimization (QUBO) problem

formulation [10, 48] based on the multivariate polynomial

𝑓 ( ®𝑥) =
∑︁
𝑖

𝑐𝑖𝑖𝑥𝑖 +
∑︁
𝑖≠𝑗

𝑐𝑖 𝑗𝑥𝑖𝑥 𝑗 , (1)

where 𝑥𝑖 ∈ {0, 1} are variables, and 𝑐𝑖 𝑗 ∈ R coefficients (it holds

that 𝑐𝑖 𝑗 = 𝑐 𝑗𝑖 ). Note that Eq. (1) can be interpreted as weighted,

undirected graph with adjacency matrix given by the coefficients

𝑐𝑖 𝑗 . The QAOA algorithm seeks to determine argmin®𝑥 𝑓 ( ®𝑥). Note
that QUBOs do not allow for specifying explicit constraints (for

instance, like in linear programs), and can only express pairwise

interactions between variables.

2
Quantum RAM is extremely hard to manufacture, and current technology allows for

producing a few qubits at most [9], which will likely remain a challenge in the near-

and mid-term future. Loading even parts of the payload into quantum resources to

work quantum algorithms on the actual data is therefore not a viable path.

Problems must be cast into QUBO form such that the minimum

value corresponds to a valid and optimal solution (this is possible

for all NP-complete problems [50]). To the best of our knowledge,

no QUBO formulations have yet been proposed for JO. One partic-

ular challenge is to find a QUBO reformulation of problems that

aligns well with the QPU properties. For instance, more quadratic

QUBO contributions result in deeper QAOA circuits [24], which

are therefore subject to larger degradation by current-day technical

imperfections. In Sec. 3, we propose a suitable encoding considering

such constraints.

QPU Embedding/Transpilation. After building the QAOA circuit

based on the problem formulation, it must be embedded onto the

QPU to match the hardware constraints regarding qubit topology

and available gates [14]. The logical circuit is transpiled into a func-

tionally equivalent circuit that only uses gate operations included

in the native QPU gateset. Also limited interaction possibilities

between qubits must be accounted for by inserting appropriate

swap gates [14] when non-adjacent qubits are supposed to interact

with each other, which increases circuit depth.

QPU Limitations. The execution of a physical circuit on NISQ

hardware is subject to various perturbations that decrease result

quality. Most importantly, current QPUs feature a limited coher-

ence time [60]: Increasing quantum circuit depth (i.e., the longest
sequence of operators in a circuit) increases the occurrence probab-

ility of errors because of, for instance, a loss of quantum information

due to interactions with the environment [68]. The coherence times

𝑇1 and 𝑇2 quantify the speed of decoherence [57, 77]. The prob-

ability of gate errors likewise increases with increasing gate count.

Consequently, it is important to find formulations of limited size.

2.2.2 Quantum Annealers. Quantum annealers (as, for instance,

offered by D-Wave [53]) implement a restricted variant of adiabatic

quantum computing (the general form is known to be equivalent

to gate-based quantum computing [2]) on NISQ hardware [26, 65].

It is subject to debate whether or not quantum annealing (QA) can

achieve speedups over classical systems [65].

Currently available quantum annealers offer thousands of qubits,

compared to hundreds of qubits in gate-based systems. They only

allow for interactions between a restricted set of qubit pairs, as

given by their connectivity graph.

Computation Model. QA also seeks to determine the minimum

energy, or ground state, of a problem Hamiltonian [26]. The same

QUBO encoding as for gate-based QPUs is applicable to quantum

annealers. QA can find minimum energy solutions to QUBOs, but

is incapable of running other quantum algorithms.

Contrary to gate-based systems, where computation time is de-

termined by the depth of a circuit and the types of gates, runtime is

a parameter for annealers: If it is too small, a non-optimal solution

will result; if it is too large, this is obviously counter to speedups.

The minimally required annealing time is (roughly, and ignoring

many details) inversely proportional to the minimum energy gap

between the ground and first excited state of the Hamiltonian [26].

This eigenvalue gap depends on the chosen encoding, and is, as a

quantum many-body problem, difficult to compute [3]. Annealing

times are therefore usually subject to empirical determination. Ad-

ditionally, pairwise interactions between variables must be mapped
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to the possibilities of physical hardware. Consequently, the concrete

encoding of problems into QUBO form is also relevant for QA, and

determining the possible instance size of JO problems on quantum

annealers is a non-trivial question that we address.

QPU Embedding. To minimise a logical QUBO on physical hard-

ware, we need to map the QUBO graph onto the connectivity graph

of the QA. Variables are mapped to qubits, and coefficients 𝑐𝑖 𝑗 in

Eq. (1) determine the physical coupling strengths between qubits.

In the D-Wave Advantage system, every physical qubit is connected

to a limited set of 15 other qubits following a certain topological

pattern (Pegasus graph [53]). Consequently, not every possible

interaction 𝑐𝑖 𝑗 can be directly realised on hardware.

To represent such interactions, sets of connected physical qubits

are combined into qubit chains [13] so that not directly connected

qubits can be made to interact. A larger mismatch between QUBO

and QA hardware graph leads to more and longer such chains. This

substantially reduces the usable amount of qubits, and increases

the error probability during the annealing process [53].

Embedding QUBO onto a given QPU topology had to be per-

formed by hand in first applications of QA on DB problems [79],

which is possible for specific problems with predictable connectiv-

ity requirements following fixed patterns (like MQO), but becomes

infeasible for more dynamic problems like JO. Additionally, the

problem is NP-complete [51, 87], and any manual approach quickly

becomes infeasible. Approximative or heuristic techniques (see, e.g.,
Refs. [22, 87]) are available; yet, we find that reducing the complex-

ity of the QUBO formulation remains a crucial requirement.

3 JOIN ORDERING ON QPUS
While casting JO as QUBO is obviously possible, it is crucial to

find a formulation that is well adapted to the constraints of QPUs.

This is a common hurdle in quantum computing, as properties of

mathematically equivalent formulations substantially impact both,

feasibility (can the problem bemapped to a QPU of given resources?)

and quality (how susceptible is the formulation to imperfections?).

For JO, we are unaware of any previous QUBO formulation. Our

approach builds on the following steps:

(1) Express JO asmixed integer linear programming (MILP) problem,

(2) Carefully adjust the MILP formulation to form a binary integer
linear programming (BILP) model,

(3) Transform BILP into QUBO, suitable for QPU processing.

3.1 Join Ordering with MILP
We first reformulate JO as a MILP problem, inspired by a contribu-

tion by Trummer and Koch [80] for classical solvers (and unrelated

to their work on multi-query optimisation on QPUs). The approach

seeks optimal left-deep join trees that allow for cross products,

without restrictions on the query graph (such JO problems are

known to be NP-complete [19]).

Solving a MILP problem entails determining a value assignment

for variables of integer or continuous domains, such that a given

linear objective function is optimised [20]. For valid solutions, the

variables need to satisfy a given set of linear constraints.

For execution on QPUs, we need to nontrivially adapt the MILP

encoding of Ref. [79], such that it satisfies constraints not present in

the original setting: The original model introduces additional vari-

ables to improve comprehensibility, relying on redundant variable

elimination by the solver. Since additional variables non-linearly

translate to additional qubits, we need to reduce the model up-front

to retain feasibility on restricted hardware. Nevertheless, the class

of JO problems considered remains identical to the original MILP

reformulation.

In [80], it is shown how to model cost functions for a variety of

operators, such as hash join and sort-merge join. However, these

require additional variables. Since we require one qubit for each

variable, as we will show in Section 3.4, and since we seek to keep

the number of required qubits at a minimum, we only consider the

more classic function 𝐶𝑜𝑢𝑡 [19], which is given by 𝐶𝑜𝑢𝑡 (𝑛𝑖 , 𝑛 𝑗 ) :=
𝑛𝑖𝑛 𝑗 𝑓𝑖, 𝑗 , where 𝑛𝑖 and 𝑛 𝑗 are the cardinalities of relations 𝑅𝑖 and

𝑅 𝑗 to be joined and 𝑓𝑖, 𝑗 is the join selectivity. Following Cluet and

Moerkotte [19] to find the optimal join order for a sequence 𝑠 of 𝑛

relations 𝑠1, ..., 𝑠𝑛 , the cost function becomes

𝐶 (𝑠) :=
𝑛∑︁
𝑖=2

𝐶𝑜𝑢𝑡 ( |𝑠1 ...𝑠𝑖−1 |, |𝑠𝑖 |), (2)

where |𝑠1 ...𝑠𝑖−1 | denotes the cardinality of the intermediate join

result after joining 𝑠1, ..., 𝑠𝑖−1. Directly encoding this cost function

into theMILP objective function is not possible because the required

product operations in 𝐶𝑜𝑢𝑡 cannot be represented in the linear

objective function with linear constraints.

To circumvent this issue, Trummer and Koch [80] propose to use

logarithmic cardinalities, as log(∏𝑖 𝑎𝑖 ) =
∑
𝑖 log𝑎𝑖 . Cardinalities

are approximated via an arbitrary number of threshold variables.

For quantum formulations, this results in a trade-off between better

approximation and more qubits that requires great care.

3.2 Pruning the MILP Model
As each binary variable in our model requires one qubit, we need to

reduce the number of variables. Modern MILP solvers can, to some

extent, detect and prune redundancies [1]. However, as model size

is crucial on QPUs, we manually ensure their removal. Additionally,

precise knowledge of the influence of variables and constraints is

important for the formal analysis in Sec. 5

Modelling Relations. We follow approach and naming conven-

tions of Ref. [80]. For each of the 𝑇 relations and 𝐽 joins, we distin-

guish between inner and outer operand in the left-deep join tree

(outer operands are the result of preceding joins). The binary vari-

ables tiitj (Table In Inner join operand) and tiotj (Table In Outer join
operand) indicate whether relation 𝑡 with 0 ≤ 𝑡 ≤ 𝑇, 𝑡 ∈ N0 is part
of the inner or outer operand of join 𝑗 with 0 ≤ 𝑗 ≤ 𝐽 , 𝑗 ∈ N0. We

add 2𝑇 𝐽 such variables to the model. To enforce solution validity,

constraints

∑
𝑡 tii𝑡 𝑗 = 1, added for each join 𝑗 , and

∑
𝑡 tio𝑡0 = 1 to-

gether ensure that each leaf of the join tree corresponds to exactly

one relation. For each join 𝑗 > 0 and relation 𝑡 , the constraint

tio𝑡 𝑗 = tii𝑡, 𝑗−1 + tio𝑡, 𝑗−1 (3)

enforces that a relation will be part of the outer operands of all

subsequent joins once it is initially included in a join. Additional

constraints ensure that the same relation cannot be part of both

the inner and outer operand of the join. For all except the final join,

these constraints are accounted for by the constraints in Eq. (3),
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and therefore redundant. It suffices to include constraints for the

final join and for each relation 𝑡 :

tio𝑡,𝐽 −1 + tii𝑡,𝐽 −1 ≤ 1. (4)

The join order representing a solution is given by all variables tio𝑡0
and tii𝑡 𝑗 that are set to 1, that is, the leaf nodes of the join tree.

Example 3.1. For each 0 ≤ 𝑡 ≤ 2 representing relations 𝑅, 𝑆 and
𝑇 , and for each join 0 ≤ 𝑗 ≤ 1, we introduce tio𝑡 𝑗 and tii𝑡 𝑗 . The
constraints enforce valid assignments, so either tio00, tio10 or tio20
must be set to 1, whereas the two remaining variables must equal 0,
since exactly one relation must represent a join tree leaf. The same
holds for the remaining leaf variables tii𝑡0 and tii𝑡1 for each relation 𝑡 .

Assume that tio00 = 1 and tii10 = 1, encoding join 0 as 𝑅 ⊲⊳ 𝑆 .
Then, tio01 = 1 and tio11 = 1, as both 𝑅 and 𝑆 are constrained to be
included in the outer operand of join 1 as a result of join 0. This implies
tii21 = 1 and therefore relation𝑇 as the inner operand for join 1, since
each leaf must be represented by one relation and no relation can be
part of both the inner and outer operand of the same join. Remaining
variables are constrained to 0, yielding join order (𝑅 ⊲⊳ 𝑆) ⊲⊳ 𝑇 .

Modelling Predicates. Consider binary predicates for joining two

relations.
3
For each predicate 𝑝 with 0 ≤ 𝑝 ≤ 𝑃, 𝑝 ∈ N0, where 𝑃

denotes the overall number of predicates, and for each join 𝑗 > 0,

we introduce a variable paopj (Predicate Applicable in Outer join
operand). It indicates whether predicate 𝑝 can be evaluated for the

outer operand of join 𝑗 , so both associated relations are part of

the outer operand of join 𝑗 . For predicate 𝑝 and join 𝑗 > 0, this is

enforced by the constraints

pao𝑝 𝑗 ≤ tio𝑇1 (𝑝) 𝑗 , pao𝑝 𝑗 ≤ tio𝑇2 (𝑝) 𝑗 , (5)

where 𝑇1 (𝑝) and 𝑇2 (𝑝) denote the first and second relation for pre-

dicate 𝑝 . The original model includes variables paop0 . However, we
prune these, since the outer operand of the very first join contains

only a single relation. In total, we add 𝑃 (𝐽 −1) many paopj variables.

Example 3.2. (cont’d) Consider the inclusion of join predicate 𝑝𝑅𝑆
for relations 𝑅 and 𝑆 . One additional variable pao01 is required to
denoting whether 𝑝𝑅𝑆 (indexed by 0) can be applied for join 1. The
pruned model omits the superfluous variable pao00 for join 0.

Two constraints pao
01

≤ tio01 and pao
01

≤ tio11 enforce that
pao

01
may only be set to one if both 𝑅 and 𝑆 are included in the outer

operand of join 1, which is the case for (𝑅 ⊲⊳ 𝑆) ⊲⊳ 𝑇 . The predicate
may therefore be applied, which impacts the cardinality calculation.
Similarly, we may add a predicate 𝑝𝑅𝑇 or 𝑝𝑆𝑇 for the relation 𝑇 . If
no predicate is provided, this necessitates a cross product for 𝑇 .

Cost Function and Cardinality Approximation. Estimating inter-

mediate cardinalities can be encoded as a MILP problem, based

on a logarithmic representaton [80]. 𝑐 𝑗 denotes the logarithmic

cardinality for the outer operand of join 𝑗 by

𝑐 𝑗 =
∑︁
𝑡

log(Card (t))tiotj +
∑︁
𝑝

log(Sel(𝑝))pao𝑝 𝑗 , (6)

where Card (𝑡) ≥ 1 is the cardinality of relation 𝑡 , and 0 < Sel(𝑝) ≤
1 is the selectivity of predicate 𝑝 . The cardinalities for each outer

join operand are approximated using 𝑅 threshold values. Following

3
We restrict our consideration to uncorrelated predicates for lower qubit requirements,

but an extension of the model to correlated predicates is discussed in Ref. [80].

Ref. [80], for each threshold value 𝑟 with 0 ≤ 𝑟 ≤ 𝑅, 𝑟 ∈ N0 and
each join 𝑗 , a variable ctorj (Cardinality Threshold reached by Outer
operand) is added to indicates if the intermediate logarithmic car-

dinality for the outer operand of join 𝑗 exceeds the threshold value

𝑟 . If ctorj = 1, the threshold value is added to the objective function

min

∑𝑅−1
𝑟=0

∑𝐽 −1
𝑗=1

cto𝑟 𝑗𝜃𝑟 , where 𝜃𝑟 denotes the 𝑟 -th threshold value.

Since we use the cost function outlined in Equation 2 and only

consider intermediate cardinalities, we prune the variables ctor0 .
Therefore, 𝑅(𝐽 − 1) variables of type ctorj are required. This is an
upper bound, since some cases allow us to prune further variables.

To ensure that variables are assigned correct values,

𝑐 𝑗 − cto𝑟 𝑗 · ∞𝑟 𝑗 ≤ log(𝜃𝑟 ) . (7)

enforces that ctorj is activated if the logarithmic cardinality 𝑐 𝑗 ex-

ceeds the threshold value, since the inequality can then only be

satisfied by setting ctorj = 1, thereby subtracting the (sufficiently

large) constant ∞𝑟 𝑗 from the left-hand side of the inequality. Con-

trary to the original model, 𝑐 𝑗 is not included, but is merely used

for convenience, abbreviating the calculation shown in Eq. (6).

We observe that in Eq. (7), variable ctorj can be pruned if the

maximum value of the logarithmic intermediate cardinality for

outer operand of join 𝑗 (which we specify in Lemma 5.2) does not

exceed log(𝜃𝑟 ). This may occur for large 𝜃𝑟 and early joins. In

these cases, subtracting ctorj · ∞𝑟 𝑗 is never required to satisfy the

constraint, rendering both variable and constraint obsolete.

Example 3.3. (cont’d) Consider the simple scenario of 𝐶𝑎𝑟𝑑 (𝑅) =
𝐶𝑎𝑟𝑑 (𝑆) = 𝐶𝑎𝑟𝑑 (𝑇 ) = 100 to specify input cardinalities. Let 𝑆𝑒𝑙 (𝑝𝑅𝑆 ) =
0.1. Clearly, optimal join orders are (𝑅 ⊲⊳ 𝑆) ⊲⊳ 𝑇 and (𝑆 ⊲⊳ 𝑅) ⊲⊳

𝑇 , where the actual costs for the intermediate join are given by
𝐶𝑎𝑟𝑑 (𝑅) · 𝐶𝑎𝑟𝑑 (𝑆) · 𝑆𝑒𝑙 (𝑝𝑅𝑆 ) = 1,000. However, for the MILP ap-
proach, we must approximate this intermediate cardinality using
threshold values, which we assume to be 𝜃0 = 100 and 𝜃1 = 1,000.
We add variables cto01 and cto11 for each of the thresholds and for
join 1, which has the intermediate result 𝑅 ⊲⊳ 𝑆 as the outer op-
erand. As we use the cost function outlined in Eq. (2) and there-
fore only consider intermediate results, we do not add variables for
join 0, which has the input relation 𝑅 as an outer operand. For both
variables, we add a constraint as given in Eq. (7). For 𝑐 𝑗 , we ob-
tain 𝑐 𝑗 = log(𝐶𝑎𝑟𝑑 (𝑅)) + log(𝐶𝑎𝑟𝑑 (𝑆)) + log(𝑆𝑒𝑙 (𝑝𝑅𝑆 )) = 3. Since
3 > log(𝜃0) = log(100) = 2, cto01 = 1 to satisfy the constraint.
However, since 3 ≤ log(𝜃1) = log(1,000) = 3, cto01 = 0 satisfies the
constraint. Therefore, only 𝜃0 = 100 is added to the costs, which is
far from the actual intermediate cardinality for 𝑅 ⊲⊳ 𝑆 . Evidently, the
choice of threshold values greatly impacts the accuracy. This requires
careful consideration for QPUs, where finding a balance between
sufficient accuracy and qubit count is crucial.

Table 1 summarises savings in variables and constraints by prun-

ing the MILP model. As we discuss below, this is crucial since both

substantially impact the number of required qubits, and decisively

influences the feasibility on current NISQ machines.

3.3 BILP Formulation
To transformation from MILP to QUBO, as required by QPUs, we

build on an intermediate BILP
4
step, since efficient transformations

4
Given a vector of 𝑛 binary variables 𝑥 ∈ {0, 1}𝑛 and a cost vector 𝑐 ∈ R𝑛 , an
optimal solution assigns variables to minimise 𝑐 · 𝑥 and adheres to to𝑚 constraints
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Table 1: Comparison of variables and constraints 𝑛 in pruned
and original [80] MILP model.

Constraint Type Original Model Pruned Model

tio𝑡 𝑗 + tii𝑡 𝑗 ≤ 1 𝑛 = 𝑇 𝐽 𝑛 = 𝑇

pao𝑝 𝑗 ≤ tio𝑇1 (𝑝) 𝑗 𝑛 = 𝑃 𝐽 𝑛 = 𝑃 (𝐽 − 1)
pao𝑝 𝑗 ≤ tio𝑇2 (𝑝) 𝑗 𝑛 = 𝑃 𝐽 𝑛 = 𝑃 (𝐽 − 1)
𝑐 𝑗 − cto𝑟 𝑗 · ∞𝑟 𝑗 ≤ log(𝜃𝑟 ) 𝑛 = 𝑅𝐽 𝑛 ≤ 𝑅(𝐽 − 1)
Variable Type Original Model Pruned Model

paopj 𝑛 = 𝑃 𝐽 𝑛 = 𝑃 (𝐽 − 1)
ctorj 𝑛 = 𝑅𝐽 𝑛 ≤ 𝑅(𝐽 − 1)

from BILP to QUBO are known [50], at least for problems restricted

to binary variables and equality constraints. The pruned MILP

model includes inequality constraints that we turn into equality

constraints by adding slack variables [20]. For instance, converting

the constraint in Eq. (7) by adding a slack variable 𝑠𝑟 𝑗 gives

𝑐 𝑗 − cto𝑟 𝑗 · ∞𝑟 𝑗 + 𝑠𝑟 𝑗 = log(𝜃𝑟 ). (8)

However, this violates the restriction to binary variables, since 𝑠𝑟 𝑗
needs to be continuous. We therefore approximate 𝑠𝑟 𝑗 by multiple

binary slack variables, since an integer bounded by 𝐶 can be ex-

pressed using 𝑛 = ⌊log
2
(𝐶)⌋ + 1 binary variables [16]. This gives

𝑠𝑟 𝑗 ≈ 𝜔
∑𝑛
𝑖=1 2

𝑖−1𝑏𝑖 , where 𝜔 denotes the approximation precision,

and 𝑏𝑖 ∈ {0, 1}. This results in

𝑛 = ⌊log
2
(𝐶/𝜔)⌋ + 1 (9)

binary variables, which, again, leads to a trade-off: More binary

variables for the approximation (smaller 𝜔) lead to higher preci-

sion, which is costly given the limited number of qubits. However,

without any remaining inequality constraints, the BILP problem

can now be trivially cast as QUBO suitable for QPUs.

3.4 QUBO Formulation
Encoding. Unlike with BILP, QUBO problems cannot include

explicit constraints. Instead, we need to ensure that a solution

with minimum value inherently corresponds to a valid solution.

Lukas [50] provides a conversion that turns BILP problems into

QUBOs of the form

𝐻 = 𝐻𝐴 + 𝐻𝐵 = 𝐴

𝑚∑︁
𝑗=1

(
𝑏 𝑗 −

𝑁∑︁
𝑖=1

𝑆 𝑗𝑖𝑥𝑖

)2
︸                       ︷︷                       ︸

𝐻𝐴

+𝐵
𝑁∑︁
𝑖=1

𝑐𝑖𝑥𝑖︸     ︷︷     ︸
𝐻𝐵

, (10)

where 𝐻𝐴 ensures valid, and 𝐻𝐵 optimal solutions.

𝐻𝐴 encodes the BILP constraints 𝑆𝑥 = 𝑏. The inner quadratic

term evaluate to 0 iff no constraint is violated. Invalid solutions are

penalised by 𝐴, and cannot correspond to the minimum value.

Through the discretisation of continuous variables,𝑏 𝑗−
∑𝑁
𝑖=1 𝑆 𝑗𝑖𝑥𝑖

may only be close, but not equal to 0 even for valid solutions. To

by satisfying 𝑆𝑥 = 𝑏, where 𝑆 ∈ R𝑚×𝑛
and 𝑏 ∈ R𝑚 . A valid solution satisfies to

constraints, but is not optimal.

circumvent this problem, we round the coefficients 𝑆 𝑗𝑖 according

to the discretisation precision 𝜔 .

Term 𝐻𝐵 encodes the cost. Weights 𝐴 and 𝐵 in Eqn. (10) must

be suitably assigned. Since we prioritise valid and non-optimal

solutions over optimal but invalid ones, 𝐴 ≫ 𝐵 needs to hold.

The weights cannot be set to arbitrarily large values, as quantum

annealers have limited resolutions to tune couplings, and high

penalty weights are also known to cause issues like slowdowns [61].

We choose the smallest possible weights such that violating a

single constraint by the smallest possible amount already leads to a

sufficiently large penalty such that the solution cannot correspond

to the minimum energy.

To determine this smallest possible violation, first consider con-

straints with only binary variables. The minimum violation is 1 in

this case—for instance, in constraint 1 − 𝑥1 + 𝑥2 = 0, with binary

variables, the configuration 𝑥1 = 𝑥2 = 1 leads to a violation by 1,

and contributes penalty 𝐴 · 1. In contrast, constraint 𝑐 − 1.1 = 0

with continuous variable 𝑐 discretised at precision 𝜔 = 0.1 delivers

a minimal violation for 𝑐 = 1.2 or 𝑐 = 1.0, contributing a penalty

of 𝐴(0.1)2 = 𝐴(𝜔)2. Therefore, the smallest violation is given by

𝜔 , and hence, 𝐴 = 𝐶/𝜔2 + 𝜖 for 𝐵 = 1, where 𝜖 is some small value

and 𝐶 =
∑𝑁
𝑖=1 𝑐𝑖 . Violating a constraint to save costs that would

otherwise be added in 𝐻𝐵 is discouraged, as it will always lead to

the same or even larger costs.

Quadratic Contributions. The number of quadratic terms in Eq. (10)

severely impacts feasibility on NISQ machines with limited con-

nectivity. Consequently, we need to understand the genesis of such

contributions to the final formulation.

A quadratic contribution arises for each pair of variables that

appears in at least one constraint. Of all constraints derived in

Sec. 3.2, cardinality approximation in Eq. (7)—required for every

join and every threshold value—contain the most variables (other

constraints contain at most three binary variables, including slack

variables). For Eq. (7), quadratic contributions arise for all variables

tio𝑡 𝑗 , tio𝑡 𝑗 and pao𝑡 𝑗 associated with join 𝑗 . Pairs between these

variables and variable cto𝑟 𝑗 , as well as all binary variables needed to
express the slack variable 𝑠𝑟 𝑗 , are required. The number of threshold

values has a large influence on quadratic contributions, as it impacts

the number of required cardinality approximation constraints. The

discretisation precision of continuous slack variables has a similarly

large impact, as it influences the amount of binary slack variables

in each of these constraints. This once more emphasises the need to

carefully choose approximation precision in a quantum approach,

which is unaccustomed from classical approaches.

3.5 Postprocessing
The final QUBO model in Eq. (1) can be used to solve JO using

both, gate-based QAOA, and quantum annealing. In either case, we

receive a sample set of possible solutions in the form of variable

assignments together with the corresponding value of Eq. (1) that

indicates the quality of a solution.

The result set must be mapped back to the initial JO problem.

Since QPUs can deliver optimal, valid, and invalid solutions ow-

ing to hardware imperfections, we need to verify solution in a

postprocessing step.
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Since non-optimal and invalid solutions are penalised, it is often

possible to filter by the magnitude of the final penalty value. Caused

by the multi-step reduction to QUBO, a large penalty indicates an

invalid solution to the BILP problem with at least one constraint

violation, but does not necessarily imply an invalid JO solution.

A solution is valid when an unambiguous, valid join tree can

be derived from the assignment of QUBO variables, even if some

constraints (e.g., those relevant for the calculation of intermediate

cardinalities) are violated. Instead of judging a solution by its pen-

alty value, we consider the value assignments for all 𝑡𝑖𝑖 variables,

which indicate the relations selected as the inner join operands,

and verify whether each inner operand is uniquely represented by

exactly one input relation. The final relation, representing the outer

operand of the first join, is then given by process of elimination.

To judge solution quality, we calculate costs of the resulting join

trees, and determine the best join order among all valid solutions.

4 ASSESSING STATE-OF-THE-ART QPUS
Current NISQ machines are not expected to solve practically rel-

evant instances of JO. Nonetheless, an evaluation of our approach

on actual hardware is important to gain insights on what limita-

tions should be addressed best in future QPUs so that they can gain

speedups over classical approaches. Note that we deliberately do

not compare our results with existing classical approaches as these

are of limited informative value, following recommendations of the

quantum computing community [54] (it is even a hard problem to

classically ascertain achieved quantum advantage [88]).

Our evaluation is based on QPUs offered by IBM and D-Wave.

We focus on (a) maximal problem sizes (in terms of qubits, and

circuit depth), (b) result quality, and (c) run/annealing times. All

steps of our analysis are fully reproducible, and all QPU results are

provided in a reproduction package.
5

4.1 Experimental Setup
Experiments for the gate-based QAOA approach are executed on

IBM Q Auckland (27 qubits, Falcon r5.11 topology) and Washington

(127 qubits, Eagle r1 topology) systems. At the time of writing,

Washington is the largest IBM Q system in terms of qubits, but

has disadvantages in coherence time. Our experimental results

confirm that for both, circuit transpilation actual execution, these

disadvantages outweigh the size benefits.

For quantum annealing experiments, we resort to the D-Wave

Advantage [53] system (5000 qubits, recently improved with a per-

formance update, Pegasus topology).

Algorithmic Setup. Our approach, implemented in Python, pre-

pares QUBO formulations for a given JO problem, and handles

interaction with the QPUs via given cloud APIs. It relies on the

gurobipy library [32] for formulating MILP and BILP problems.

Packages docplex [38] (for IBM Q) and qubovert [67] (for Advant-
age), are used to formulate QUBO representations, which are then

processed and passed to the QPU by IBM Qiskit [41] (IBM) and

D-Wave Ocean [21] libraries.

5
Available on Zenodo: https://doi.org/10.5281/zenodo.6508695; final version will con-

tain a full reproduction package following [52].

The Qiskit QOAO library is used to generate quantum circuits

that can be embedded onto IBM Q using the Qiskit transpiler (op-

timisation level 1). We run QAOA with 𝑝 = 1, which creates one

iteration of cost and mixing operators, since larger value of 𝑝 lead

to circuit depths beyond machine capability. Classical optimisation

is performed with the Qiskit analytic quantum gradient descent

optimiser (AQGD). We sample 1024 shots for each circuit executed

on the QPU. Remaining parameters are set to their defaults.

For our experiments on the D-Wave Advantage system, we de-

termine suitable embeddings using the heuristic minorminer tool

provided in the D-Wave Ocean library [22]. We perform 1,000 an-

nealing runs (matching the number of shots for IBM Q) for each

JO problem. We experimentally determine suitable chain strengths,

depending on the size of the respective JO problem. The exact chain

strength values can be found in our provided reproduction package.

We conduct experiments for varying annealing times, to study their

impact on the solution quality. The remaining parameters are again

set to their default values.

Queries. To ascertain a representative selection of larger queries

with an increasing amount of relations and varying query graph

types (chain, star and cycle queries), we rely on the method of Stein-

brunn et al. [76], using the query generator code by Trummer [78].

Limitations of larger IBM Q machines, as explained above, ne-

cessitate to restrict experiments to 27 qubit (Auckland) machines.

We can process basic queries that join at most three relations. Ex-

periments do not reach practically relevant dimensions, but we

provide qubit requirements for realistic problems on future QPUs

below. Compared to IBM Q, the D-Wave Advantage system allows

for embedding substantially larger queries.

Nonetheless, even with the restriction to three relations, we

can generate different JO problems with varying properties. For

instance, we generate problems that consider different numbers

of predicates: For a query joining three relations, this provides us

with four scenarios in total, where the number of predicates ranges

between zero and three. As a result, for queries with less than

two join predicates, cross products are required. For the remaining

two scenarios with two and three predicates, we generate a chain

query and a cycle query. These scenarios translate into varying

qubit requirements, from 18 qubits for zero predicates up to 27

qubits for three predicates. This allows us to judge the impact of

increasing problem dimensions, even with the restriction to three

relations. Similarly, instead of increasing the number of predicates,

we can vary the precision for discretising continuous variables, and

generate problems of different dimensions, ranging from 18 to 27

qubits. This allows us to compare specific parameter settings.

Our goal is to find bounds on the dimension of JO problems for

which QPUs determine viable solutions (since both, machines and

algorithm, are stochastic, this is not guaranteed). QPU performance

is influenced by a multitude of factors, algorithmic and physical,

and deteriorates quickly for increasingly complex problems.

To focus on effects specific to the hardware instead of JO detail

issues, we consider queries with integer logarithmic cardinalities

and integer logarithmic predicate selectivities. This avoids discret-

isation issues with continuous variables. As discussed above, this

has a large impact on the quadratic contributions to qubit scaling,

and therefore the overall feasibility of our approach. Any upper
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bounds derived in this scenario also apply to more general prob-

lems. Despite this relaxed scenario, our findings indicate much less

optimistic predictions than published applications of QA to other

query optimisation problems [79].

4.2 Experimental Results
We next discuss the results for our experimental evaluation of query

optimisation on state-of-the-art QPUs. For both, IBMQ and D-Wave

QPUs, we study the maximum problem dimensions for which we

can determine a suitable embedding onto either architecture, as

well as the performance of our approach on the actual QPUs.

4.2.1 IBM Q Results.

Transpilation. Figure 2 shows the distribution of circuit depths

(based on 20 transpilations) necessary to embed QAOA circuits

on two IBM Q devices using the heuristic Qiskit transpiler. As

discussed, the circuit depth is crucial for the performance (and feas-

ibility) of gate-based quantum computing, but varies intensely with

the problem beyond size, rather different from classical approaches.

Varying Property Varying Topology

18 21 24 27 18 21 24 27

200

300

400

500

# Qubits

C
i
r
c
u
i
t
D
e
p
t
h

Property

Precision

Predicates

System

Auckland

Washington

Figure 2: Circuit depths of various scenarios, IBM Q devices.

The left hand side of Fig. 2 compares circuit depths for prob-

lems with three relations and one threshold value, but different

numbers of predicates and approximation precisions. By varying

the approximation precision (striped boxplots) from zero to three

decimal places (using zero predicates), we arrive at problems that

can be mapped to 18, 21, 24 and 27 qubits. By varying the amount of

predicates (dotted boxplots) from zero to three (using a discretisa-

tion precision of 0 decimal positions), we arrive at the same qubit

requirements. Based on results of 20 Qiskit transpilation runs, we

see that the increase in median circuit depth, but also in variance

is considerably more pronounced for increasing precision than for

increasing amounts of predicates. Equally interesting, the transpil-

ation heuristic alone contributes substantial variance in the 24 and

27 qubit cases. Increasing the approximation precision therefore not

only limits the feasible instance size (as fewer qubits are available

for encoding relations or predicates), but also greatly impacts the

circuit depth, thereby increasing the probability for gate errors and

decoherence errors, and reducing result quality.

The right hand side of Fig. 2 compares embeddings of JO prob-

lems with an increasing number of predicates on IBM Q Auck-

land (27 qubits, Falcon r5.11 topology) and Washington (127 qubits,

Eagle r1 topology) QPUs to analyse the impact of different qubit

topologies on circuit depth. The increase is comparable to varying

predicates on the left hand side, and we observe up to 70% differ-

ence depending on the slight variations of the topology for one

single vendor (interestingly, the larger connectivity graph in terms

of qubits leads to higher circuit depths).

We need to put these results in context by considering coher-

ence times and average gate time gavg—the cumulative gate times

form a lax upper bound for practical utility, because for longer

computation times, random results are to be expected. At the time

of running the experiment,
6
the systems report coherence times

of 𝑇1 = 151.13𝜇s, 𝑇2 = 138.72𝜇s (Auckland), and 𝑇1 = 92.81𝜇s,

𝑇2 = 93.36𝜇s (Washington). Average gate times are reported as

472.51ns (Auckland) and 550.41ns (Washington)—this, again, shows

that a larger amount of qubits does not guarantee more favourable

system-global properties.
7
Given these parameters, the approxim-

ate maximum depth 𝑑 of a circuit to not exceed 𝑇1 or 𝑇2 is given

by 𝑑 = ⌊min(T1,T2)/𝑔avg⌋.

QPU Performance. The previous results indicate that we cannot
expect meaningful results for a high discretisation precision. Like-

wise, the required circuit depth rapidly exhaust coherence times

of the Washington QPU. Experiments are therefore restricted to

the 27-qubit Auckland QPU, with minimum precision, which again

restricts us to problems with at most three relations.

Table 2: Solution quality for JO with three relations and vary-
ing amounts of predicates and QAOA iterations. Probabilities
for finding valid and optimal solutions are based on 1024
shots on the IBM Q Auckland (27 qubits).

Predicates/Qubits 0/18 1/21 2/24 3/27

Valid solutions

20 Iter. 13% 11% 7% 13%

50 Iter. 12% 8% 10% 13%

Optimal solutions

20 Iter. 4% 3% 2% 5%

50 Iter. 3% 3% 5% 3%

Table 2 shows the QAOA results for 1,024 shots performed on

the Auckland QPU, for queries with increasing predicate numbers,

and provides the fraction of measurement shots that lead valid or

optimal solutions. Note that for each query optimised on the QPU,

the values of all solutions exceeded the minimal penalty, indicating

at least one BILP constraint violation and once more demonstrating

the imperfections of current QPUs. However, as discussed earlier,

we consider each solution valid as long as it unambiguously corres-

ponds to a valid join tree.

For all considered problems, optimal solutions are determined

by the QPU. Interestingly, for increasing problem dimensions, we

do not observe a consistent decrease in the ratios of either valid

or optimal solutions. Likewise, increasing the number of QAOA

iterations has no consistent impact on solution quality. Due to

6
IBM QPUs undergo periodic recalibration operations to optimise𝑇1 and𝑇2 , so the

values are not stable across different experiments.

7Quantum volume [56] has been suggested as more balanced measure that weighs

various characteristics of QPUs; interestingly, it is 64 for both QPUs in our experiments.
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current QPU limitations, it remains an open question how the

solution quality scales for larger search spaces (i.e., more relations).

Finally, consider the time 𝑡𝑠 required to perform the actual circuit

sampling, and the overall QPU time 𝑡qpu that includes additional

initialisation steps and communication overhead (but does not take
into account any delays spent in time-sharing queues that are ne-

cessary for shared cloud access to the machine). For 0 predicates,

𝑡𝑠 = 77.9ms and 𝑡qpu = 9.74s. The times intervals increase to

𝑡𝑠 = 113.70ms and 𝑡qpu = 10.35s for three predicates. The overall

QPU time is orders of magnitude larger than the sampling time, and

the problem size has negligible impact on the time it takes to receive

sampled results for a QAOA circuit from the QPU. This must be

taken into account when evaluating optimistic claims on possible

QPU speedups based on solely 𝑡𝑠 , as seen in the literature.

4.2.2 D-Wave Results. Our experimental analysis of the D-Wave

Advantage system first determines upper bounds on the solvable

problem dimensions by embedding the QUBO formulation onto the

hardware graph, and then analyses the achievable result quality for

given annealing times.

Embeddings. Fig. 3 depicts the embedding results for varying JO

problems. We analyse the scaling of the number of physical qubits

required for an embedding.

Firstly, consider scalability for an increasing number of relations

for varying query graph types at minimum approximation precision.

The type of query graph (chain, star, and cycle) has a negligible

impact on the embeddings (top part). Cycle queries result in slightly

larger embeddings compared to chain and star. For cycle queries,

one additional predicate is required, which leads to a small overhead

in QUBO variables.

For all three query graph types, we can determine embeddings for

queries with up to 15 relations atminimum approximation precision,

which provides an upper bound for solvable problem dimensions.

The required physical qubits scale quadratically with the number of

joined relations. As we show later, the number of binary variables

(and therefore logical qubits) also scales quadratically with the

number of relations. Embedding a JO problem onto the D-Wave

topology therefore merely results in a linear qubit overhead.

However, increasing the approximation precision by more thre-

shold values (bottom part) significantly increases the size of embed-

dings, particularly for smaller 𝜔 . For eight relations, we can include

up to 20 threshold values at 𝜔 = 1 (0 decimal positions), whereas

merely six threshold values at 𝜔 = 0.01 (two decimal positions),

and three at 𝜔 = 0.0001 (four decimal positions) are possible.

QPU Performance. Our embedding results provide an upper bound

on the problem size that can be worked on the D-Wave Advantage

system. To evaluate the practical feasibility of JO, we must also

consider the achievable solution quality. Table 3 shows probabilit-
ies to reach valid and optimal solutions for queries with up to five

relations (minimal discretisation precision, one threshold value).

Solution quality is not much influenced by query graph topology,

but a steep decline in quality comes with increasing relations. In

general, it suffices if one among all annealing shots corresponds

to a (near-)optimal solution. For three and four relations, optimal

solutions are determined sufficiently often. From five relations

onward, typically none of the 1,000 shots include even a single
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Figure 3: Physical qubits required to embed JO onto D-Wave
Advantage. Top: Varying relations for random JO instances
with 𝜔 = 0. Bottom: Varying approximation precision for a
fixed JO instance with eight relations.

Table 3: Average fraction of valid and optimal solutions ob-
tained in 1,000 annealing runs over 20 JO experiments, de-
pending on annealing time (Δ𝑡 ) and query graph type.

Query Δ𝑡 3 Relations 4 Relations 5 Relations

Graph [𝜇s] Valid Opt. Valid Opt. Valid Opt.

Chain

20 30.0% 7.96% 1.53% 0.18% 0.07% 0%

60 31.0% 8.68% 1.75% 0.17% 0.07% 0%

100 33.0% 7.94% 1.86% 0.16% 0.05% 0%

Star

20 - - 1.93% 0.31% 0.02% 0%

60 - - 2.10% 0.29% 0.02% 0%

100 - - 1.77% 0.17% 0.02% 0%

Cycle

20 25.49% 9.44% 3.10% 0.28% 0.02% 0%

60 27.43% 10.26% 2.86% 0.29% 0.02% 0%

100 27.22% 10.14% 3.20% 0.36% 0.03% 0%

valid solution, independent of query graph type and annealing time.

While it is possible to embed larger problems onto the QPU, the

approach stops being feasible for current D-Wave QPUs for more

than four relations, which eliminates a potential advantage over

9



gate-based QPUs. The impact of annealing times is minimal, which

agrees with previous experience (see, e.g., Refs. [46, 72]).
Our experimental analysis clearly shows that contemporary

QPUs are not practically useful to solve JO problems. Limited

amounts of qubits, limited connectivity, and lack of robustness

against noise reduce capabilities and performance. These issues

will eventually (likely in the very long term [44]) be addressed by

error-corrected, perfect QPUs. To progress towards earlier QPU

utility, we now pursue two strands: First, we derive an upper bound

on the amount of required qubits for JO; this allows us to predict

how QPU capacity will need to grow to accommodate realistic

problem sizes. Then, we address the question of which properties

of QPUs should be improved to progress towards practical utility.

5 FORMAL ANALYSIS
We now derive upper bounds on the amount of logical qubits based

on the BILP model, where each variable corresponds to one qubit.

Slack variables, as required to handle inequalities, contribute

substantially to the overall number of qubits. Before we can derive

an upper bound for the number of binary slack variables, we need

to bound the value of a continuous slack variable:

Lemma 5.1. The value for a continuous slack variable 𝑠𝑟 𝑗 is bounded
by 𝑠𝑟 𝑗 ≤ 𝑐 𝑗max , where 𝑐 𝑗max denotes the maximum logarithmic cardin-
ality of the outer operand of join 𝑗 .

Proof. By Eq. (8), an upper bound for 𝑠𝑟 𝑗 is given by

log(𝜃𝑟 ) + ∞𝑟 𝑗 ≥ log(𝜃𝑟 ) + ctorj∞𝑟 𝑗 − 𝑐 𝑗 = srj . (11)

Since our model assumes uncorrelated predicates, the fraction of

surviving tuples after joining multiple relations is given by the

product of selectivities of all applicable predicates. Since 𝑆𝑒𝑙 (𝑝) > 0,

an intermediate result contains at least one tuple, hence 𝑐 𝑗 ≥ 0.

The upper bound depends on the constant ∞𝑟 𝑗 , which needs to be

sufficiently large to satisfy the constraint by activating ctorj , but
can otherwise be freely chosen.

Since we seek the smallest upper bound for srj , we next specify
a lower bound for∞𝑟 𝑗 . Following Eq. (7), this lower bound is given

by ∞𝑟 𝑗 ≥ 𝑐 𝑗max
− log(𝜃𝑟 ) ≥ 𝑐 𝑗 − log(𝜃𝑟 ). Setting ∞𝑟 𝑗 to its lower

bound, and inserting it into Eq. (11), produces 𝑠𝑟 𝑗 ≤ 𝑐 𝑗max
. □

Lemma 5.2. The maximum logarithmic cardinality 𝑐 𝑗max for the
outer operand of join 𝑗 is given by 𝑐 𝑗max =

∑𝑗+1
𝑡=0

log(Card (𝑡)), where
Card (𝑘) ≥ Card (𝑙)∀𝑘 < 𝑙 .

Proof. The logarithmic cardinality 𝑐 𝑗 for join 𝑗 is given by

𝑐 𝑗 =
∑
𝑡 log(Card (t))tiotj +

∑
𝑝 log(Sel(𝑝))pao𝑝 𝑗 . The cardinality

may be reduced by applying predicates, since 0 < 𝑆𝑒𝑙 (𝑝) ≤ 1,

making the logarithmic values negative. Since we consider the max-

imum cardinality, we set all variables pao𝑝 𝑗 = 0, disregarding any

predicates. The outer operand of join 𝑗 contains exactly 𝑗 + 1 rela-

tions. The logarithmic intermediate cardinality is then maximised

if the outer operand for join 𝑗 contains the first 𝑗 + 1 relations out

of a list of relations sorted in descending order by cardinalities. □

Theorem 5.3. Given𝑇 relations, 𝐽 joins, 𝑃 predicates and𝑅 threshold
values, an upper bound for the number of variables is given by

𝑛 ≤ 2𝑇 𝐽 + (3𝑃 + 𝑅) (𝐽 − 1) +𝑇 + 𝑅∑𝐽 −1
𝑗=1

( ⌊
log

2

(
𝑐 𝑗
𝜔

)⌋
+ 1

)
, where 𝜔

is the approximation precision for the continuous slack variables.

Proof. The number of binary variables is 𝑛pec +𝑛sl, where 𝑛pec
is the number of problem-encoding variables given in Sec. 3.2, and

𝑛
sl
counts slack variables for equality conversion.

First, we specify an upper bound for𝑛pec. As explained in Sec. 3.2,

variables tiitj and tiotj are added𝑇 · 𝐽 times, whereas variables paopj
and ctorj are added 𝐽 − 1 times for 𝑃 predicates and 𝑅 threshold

values. Depending on the concrete JO problem, we may be allowed

to prune variables. A variable ctorj is unnecessary if the logarithmic

cardinality of the outer operand for join 𝑗 can never exceed the log-

arithmic threshold value log(𝜃𝑟 ). We therefore prune every variable

ctorj if 𝑐 𝑗max
≤ log(𝜃𝑟 ). The number of variables when no pruning

is possible then gives the upper bound 𝑛pec ≤ 2𝑇 𝐽 + (𝑃 + 𝑅) (𝐽 − 1).
To specify an upper bound for 𝑛

sl
, consider that one binary slack

variable is needed for each inequality constraint expressed by

Eqns (4),(5). As such, 𝑇 + 2𝑃 (𝐽 − 1) variables are required in these

cases. In turn, multiple binary slack variables are needed to ap-

proximate continuous slack variables for constraints expressed by

Eq. (7). Following from Lemma 5.1 and Eq. (9), an upper bound

for the number of binary slack variables 𝑛𝑏 required to discretise

all continuous slack variables for 𝐽 − 1 joins and 𝑅 threshold vari-

ables is given by 𝑛𝑏 ≤ 𝑅
∑𝐽 −1

𝑗=1

(
⌊log

2

(
𝑐 𝑗max

/𝜔
)
⌋ + 1

)
. Note that we

specify an upper bound, since a constraint is only required if the

corresponding variable ctorj has not been pruned. Considering the

other inequality constraints, the upper bound for 𝑛
sl
is given by

𝑛
sl
≤ 𝑇 + 2𝑃 (𝐽 − 1) + 𝑛𝑏 , which leads to the upper bound for the

overall number of binary variables 𝑛 = 𝑛pec + 𝑛sl as

𝑛 ≤ 2𝑇 𝐽 + (3𝑃 + 𝑅) (𝐽 − 1) +𝑇 + 𝑅

𝐽 −1∑︁
𝑗=1

( ⌊
log

2

(𝑐 𝑗max

𝜔

)⌋
+ 1

)
.

□

6 DB-QPU CO-DESIGN FOR JOIN ORDERING
We now commence to deriving recommendations for future QPU

designs customized towards serving as co-processors in databases.

6.1 Logical Qubit Scaling
Fig. 4 visualises upper bounds for a variety of JO problems with up

to 64 relations and different discretisation precisions. We measure

for cyclic query graphs, as they need one additional join predicate

compared to other types, and require the largest number of qubits.

The upper bound for the required logical qubits scales quadrat-

ically with the number of relations, the dominating scaling factor.

Increase in discretisation precision has comparatively little impact

on the upper bound compared to the number of relations, even

if the difference in terms of qubits can reach more than 50% in

some scenarios (top right). Nonetheless, as we have shown in the

experimental analysis, this seemingly minor influence can have a

decisive impact on the feasibility on current QPUs.

The required amount of qubits rapidly exceeds the capacity of

current gate-based NISQ machines. Solving the largest problems

considered with classical MILP solvers [80], where queries with 60

relations are joined, requires a QPU with more than 20,000 qubits,

which is out of reach for the foreseeable future. However, a QPU

offering 1,000 logical qubits can, depending on the approximation
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and discretisation precision, solve problems with up to 13 relations,

and therefore optimise queries roughly equal in size to those con-

sidered in the JO benchmark by Leis et al. [47]. Vendor roadmaps

claim to offer such QPUs within the next few years [37].

1
6
T
h
r
e
s
h
.
V
a
l
u
e
s

8
T
h
r
e
s
h
.
V
a
l
u
e
s

1
2
T
h
r
e
s
h
.
V
a
l
u
e
s

4
T
h
r
e
s
h
.
V
a
l
u
e
s

20 40 60 20 40 60

0

10

20

30

40

0

10

20

30

40

# Relations

#
L
o
g
i
c
a
l
k
Q
u
b
i
t
s

Precision [Decimal Positions] 0 2 4

Figure 4: Upper bounds for logical qubits for JO with varying
approximation (thresh. values) and discretisation precisions.

6.2 QPU Extrapolation
Future QPUs need to improve gate errors and decoherence. Their im-

pact amplifies with increasing quantum circuit depth, and we have

observed that even minor alterations to the topology lead to sub-

stantial variations in circuit depth. We now analyse the feasibility

of solving JO problems on hypothetical improved QPU topologies.

Scenarios. We extrapolate new topologies in three ways: By in-

creasing the amount of qubits based on a structural extension of

the available connectivity graph, by augmenting the graph with

additional connections, and by using different quantum gate sets.

To quantify possible improvements, we again solve JO on queries

generated by the code of Ref. [78]. We consider problems with two

threshold values, and minimal discretisation precision (i.e., 𝜔 = 1).

Size Extrapolation. We consider baseline designs from IBM [39]

(127 qubit Washington), IonQ [40], and Rigetti [69] (80-qubit Aspen-

M), that is, their topologies and native gate sets. Similarly to IBM Q,

Rigetti QPUs are based on superconducting qubits, whereas IonQ

QPUs are based on trapped ions. QPUs based on this physical

principle are more stable and offer full connectivity between qubits,

whereas QPUs featuring superconducting qubits offer less qubit

connectivity and stability, but feature faster gates [9, 60].

IBM and Rigetti topologies are based on repeating patterns, allow-

ing for straightforward extrapolation to larger numbers of qubits

(the detailed logic is given in the reproduction package). IonQ QPUs

do not require extrapolation, as their topology is a complete mesh.

Density Extrapolation. Weaugment existing topologies by adding

new connections between previously non-adjacent qubits. A fully

connected topology with 𝑛 qubits contains 𝑁 = 𝑛(𝑛 − 1)/2 edges.
When the baseline topology includes 𝑀 edges, we quantify the

extended connectivity as 𝑑 = 𝑚/(𝑁 − 𝑀), where 𝑚 denotes the

amount of added notes. 𝑑 lies in the interval [0, 1], and interpolates
between the baseline topology (𝑑 = 0) and a complete mesh (𝑑 = 1).

We assume connections between non-adjacent qubits with close

topological proximity are more likely to be featured in future QPUs

than between far-distant qubits. Instead of uniformly sampling

from the set of all missing connections, we favour extending the

connectivity between non-adjacent qubits with close proximity.

Consider the set of connections 𝐶𝛿 between qubits with dis-

tance 𝛿 . Starting with 𝛿 = 2, we uniformly add connections sampled

from 𝐶𝛿 , until the desired density is reached, or until all elements

of 𝐶𝛿 have been added, in which case we restart from 𝐶𝛿+1.

Results. Figure 5 shows the depths of the quantum circuits for

combinations of randomly generated join ordering problems (as

before), QPU architectures (varying topology and gate set), and

transpilation methods. Concerning gate sets, we study the impact

of transpilation onto the native set, which involves replacing any

unsupported gate operation with an effectively equivalent chain

of native operations, versus unrestricted gate sets, where we as-

sume the QPU to natively support any possible gate operation. For

density 0 (i.e., baseline topology), we notice a substantial increase
in circuit depth for an increasing number of relations (notice the

graph is in log scale!) that quickly exceeds NISQ capabilities. How-

ever, even very moderately increased densities (0.05 to 0.1) lead do

much smaller circuit depths (up to one order of magnitude for the

native gate sets). On IBM Q, relative differences in circuit depth are

about identical between density 0 and 0.05, and 0.75 and 1–albeit

a fully meshed qubit network, as described by density 1, is obvi-

ously impossible to achieve in a two-dimensional structure. This

indicates that adding even a small amount of extra connections can

substantially impact the utility of QPUs for join ordering problems.

Similar observations, albeit not as pronounced, hold for Rigetti.

Transpiling a circuit onto the native gate sets (compared to un-

restricted gates) also significantly increases depth as compared to a

(hypothetical) unrestricted gate set for the Rigetti QPU, but does

not significantly impact IBM Q. Nonetheless, judiciously expanding

the set of supported native operations may also enhance problem

feasibility of future QPUs as an alternative to improved topologies.

Circuit synthesis is a widely investigated topic in the classical

domain, and has gained attention for QPUs (see, e.g., Refs. [4,
15, 82]). Recent work addresses, for instance, noise reduction in

QPUs [84], or how to approximate quantum circuits [83]. Our ex-

periments therefore consider two (sufficiently mature) transpilation

approaches, Qiskit [41] and tket [75]. While the scaling behaviour is

essentially identical for increased connectivity density, we observe

an overhead of typically 100% for tket over Qiskit for the super-

conducting platforms. Since both transpilers produce comparable

results for complete meshes as in the IonQ case, we conclude that

their capabilities of the approaches are similar for boundary cases,

but need to be carefully evaluated in all other cases.

The IonQ platform features full connectivity between qubits

as baseline, and is therefore not subjected to experiments with

increasing density. The resulting circuit depths seem ideal compared

to the superconducting platforms. Yet, the amount of qubits that can

be supported by this physical technology is limited by the amount

of individual ions that can be caught in a trap; current technology

allows for tens of ions [28], and major improvements are not to be

expected. Considering the predictions of Fig. 4, the advantages in

circuit depth are therefore compensated by the lack of qubits.
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Figure 5: Circuit Depths for hypothetical future QPUs on varying join order instances. Experiments are performed with
different query graph topologies, but these are not visualised since no relevant differences arise.

7 RELATEDWORK
Join ordering is among the most studied problems in database

research [29, 45, 47, 55, 58, 59, 76, 80, 86]. Yet, no published work

exists for JO with QCs to the best of our knowledge. Very few

endeavours address the more general use of QCs in databases. This

is in stark contrast to the growing interest in quantum computing

in other fields [17, 18, 36, 42, 43, 62, 63, 66, 70, 71, 81, 85].

The multi-query optimisation problem (MQO) was analysed by

Trummer and Koch [79] for quantum annealing at the VLDB confer-

ence. They experimentally compare QA performance with classical

approaches. Due to the hardware limitations, they had to focus

on small-scale problems and could only speculate on speedups for

this specific class. Frankhauser et al. [23] addresses MQO for gate-

based QPUs. DB transaction scheduling, was studied by Groppe

and Groppe [30], and Bittner and Groppe [11, 12].

Related work on quantum computing (e.g., Refs. [9, 60]), anneal-
ing (e.g., Refs [3, 53]), and the utilised algorithms like QAOA [7, 24,

25, 33–35] has been intensively discussed in Sec. 2.

8 DISCUSSION AND CONCLUSION
Quantum computing is a new paradigm that promises—grounded

on theoretical insights and guarantees [9], but also based on first

experimental results on certain problems [6]—speedups for com-

putational problems over classical approaches. The technology is

structurally apt for many aspects of database systems, including

query optimisation problems. So far, the use of QCs for databases

is extremely underexplored. Yet, our work leaves a Janus-faced

impression: On the one hand, we show that current NISQ-systems

are far away from producing benefits, or even from handling real-

istically sized instances, and the classical operations required to

access them can eliminate any quantum advantage. This, at least,

paints a more sober picture than initial optimistic evaluations of the

technology. On the other hand, we show that with relatively minor

adaptations, QPU-DB performance can be substantially enhanced.

This prompts to use co-design approaches to create QPU-DB ac-

celerators, which is reasonable given that databases are among the

commercially most important applications of computer science.

QPUs are typically accessed via cloud services, but we envision

their use as local co-processors to accelerate query processing. This
avoids the impact of network latencies (that govern QPU cloud

services), which can easily eliminate quantum speedups.

Our results and predictions show that a multitude of factors influ-

ence the performance of QC approaches on DB problems, ranging

from unusual problem formulations in QUBO form that massively

diverge from traditional implementation techniques, to unfavour-

able scaling caused by subtle issues like discretisation precision, to

a complex interplay of physical implementation properties. This

makes it impossible to delay QC integration into databases until suf-

ficiently evolved hardware is available, but prompts the co-design

of database accelerators. Simulating perfect quantum computers en-

tails solving NP-hard problems, and adding the effects of noise and

imperfections causes additional complexities. Consequently, we

argue that co-design efforts should be based on step-wise empirical

refinement leveraging expert knowledge from quantum computing,

databases, and systems engineering.

Our work lays the ground for this endeavour: Our QUBO for-

mulation of JO enables the experimental exploration of two major

classes of QCs, and we identify relevant factors that inhibit scalab-

ility and practical utility. We also provide directions on designing

QPUs favourable for join ordering problems.

Nonetheless, many open research problems remain, from effi-

cient circuit generation that respects the influence of noise, to more

targeted extensions of topologies that transcend our semi-stochastic

approach, to considering alternative information encoding schemes

that might (e.g., by representing rational values in amplitudes in-

stead of storing them in qubits) alleviate discretisation problems.

Yet such approaches are still challenged by major physical and

algorithmic obstacles, and require intensive future interdisciplinary,

focused research.
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