
DeBinelle: Semantic Patches for Coupled
Database-Application Evolution

Stefanie Scherzinger∗
University Passau

Germany
stefanie.scherzinger@uni-passau.de

∗ Authors contributed equally

Wolfgang Mauerer∗
Technical University of Applied Sciences Regensburg

Siemens AG, Corporate Research
Regensburg/Munich, Germany

wolfgang.mauerer@othr.de

Haridimos Kondylakis
FORTH-ICS

Heraklion, Greece
kondylak@ics.forth.gr

Abstract—Databases are at the core of virtually any soft-
ware product. Changes to database schemas cannot be made
in isolation, as they are intricately coupled with application
code. Such couplings enforce collateral evolution, which is a
recognised, important research problem. In this demonstration,
we show a new dimension to this problem, in software that
supports alternative database backends: vendor-specific SQL
dialects necessitate a simultaneous evolution of both, database
schema and program code, for all supported DB variants. These
near-same changes impose substantial manual effort for software
developers. We introduce DeBinelle, a novel framework and
domain-specific language for semantic patches that abstracts
DB-variant schema changes and coupled program code into a
single, unified representation. DeBinelle further offers a novel
alternative to manually evolving coupled schemas and code.
DeBinelle considerably extends established, seminal results in
software engineering research, supporting several programming
languages, and the many dialects of SQL. It effectively eliminates
the need to perform vendor-specific changes, replacing them with
intuitive semantic patches. Our demo of DeBinelle is based on
real-world use cases from reference systems for schema evolution.

Index Terms—Databases; Evolution; Semantic Patches

I. INTRODUCTION

Decades of research have contributed frameworks for man-
aging database schema evolution. Early proposals date back
to the 80s [1], among the more recent are PRISM [2],
InVerDa [3], or CHiSEL [4]. Yet from the perspective of
software developers, the schema does not evolve in isolation.
When the database schema changes, other parts of the code,
such as GUIs and application logic, commonly change as
well. This coupling causes collateral evolution, a known and
important challenge [5]

Numerous applications support several alternative database
backends (or variants), which adds complexity [6]: There are
widely adopted database applications where SQL dialects1 lead
to multiple, essentially identical schemas to be declared and
maintained. This does not affect only legacy systems (whose use
will eventually cease), but also “new generation” applications,
such as MediaWiki, the software behind Wikipedia.

When such applications are installed, the operations team
chooses one of the supported database variants. Yet during
application development, each schema variant is again coupled

1Wikipedia (link available in PDF) compares SQL dialects.

with code. Despite the fact that the evolution histories of
prominent database applications, for instance, the well-known
content management systems MediaWiki and Joomla!, have
been extensively studied as reference systems for schema
evolution [7]–[11], only a few studies consider collateral evolu-
tion [5], [12], [13], and no studies known to us target the added
challenge of maintaining vendor-variant database schemas in
parallel. Moreover, relational mappings do not resolve the
problem—they merely introduce one more software layer [14].
To the best of our knowledge, all existing tools supporting
database schema evolution focus on single-schema evolution.

Contributions: In this demonstration, we unfold the
problem of collateral evolution, where database and application
evolution are coupled. This involves the need for performing
recurring, conceptually identical changes to database schema
and program code, for each database variant. While this is
a real and important problem, it has so far been overlooked
in research. To the best of our knowledge, ours is the first
paper addressing this specific problem. Then, we present the
DeBinelle framework, implemented in OCaml and based on the
ideas of Coccinelle [15], deliberately delivered as a command
line tool. It can be readily integrated into any development
process, with minimal upfront costs. Further, we introduce and
explain DeBinelle semantic patches that capture the changes to
the vendor-specific database schemas, as well as the application
code, on a conceptual level. We demonstrate the usefulness of
our approach and allow demo participants to issue semantic
patches for real world scenarios, effectively applying patches
with only a few lines, to hundreds lines of code. We further
provide insights into DeBinelle internals. At its heart, DeBinelle
computes a graph embedding, mapping the control flow graph
of a semantic patch onto the control flow graph of the target
code. In the demo, we also show how a Datalog engine may
compute these mappings.

Outline: In Section II, we present the DeBinelle frame-
work along with its architecture, and the concept of semantic
patches. In Section III we present related work, showing that
DeBinelle fills an important gap in existing research. Section IV
presents the demonstration scenario and concludes this paper.

https://en.wikibooks.org/wiki/SQL_Dialects_Reference
https://github.com/wikimedia/mediawiki
https://github.com/joomla/joomla-cms


1 CREATE TABLE IF NOT EXISTS member (
2 memberid VARCHAR(16) NOT NULL PRIMARY KEY,
3 name VARCHAR(128) NOT NULL,
4 street VARCHAR(256) NOT NULL,
5 city VARCHAR(256) NOT NULL,
6 zip VARCHAR(16) NOT NULL );
7

@ add_member_expiry @
sqltype T;
@@ -- applies to multiple DB-variant schemas
CREATE TABLE member (

� unless expiry T
+ expiry @date_type() NOT NULL
);

CREATE TABLE IF NOT EXISTS member (
memberid VARCHAR(16) NOT NULL PRIMARY KEY,
name VARCHAR(128) NOT NULL,
street VARCHAR(256) NOT NULL,
city VARCHAR(256) NOT NULL,
zip VARCHAR(16) NOT NULL,
expiry DATE NOT NULL );

1 QSqlQuery query(db);
2 switch (db.driverName()) {
3 case sqlite:
4 memberid = memberid.trimmed().toLower();
5 query.prep("SELECT LENGTH(name) "
6 "FROM member WHERE memberid = ?");
7 break;
8 case postgresql:
9 query.prep("SELECT CHAR_LENGTH(name) "

10 "FROM member WHERE memberid = ?");
11 memberid = memberid.toLower();
12 break;
13 case mysql:
14 � �

15

(a) Input Schema/Target Code

@ ignore_expired @
dbvariant V:{sqlite, postgresql, mysql};
@@

vIF V {
�

"FROM member WHERE memberid = ?"
+ "AND (@read_date(expiry) - @today()) > 0"

);
�

}

(b) DeBinelle Semantic Patch

QSqlQuery query(db);
switch (db.driverName()) {
case sqlite:
memberid = memberid.trimmed().toLower();
query.prep("SELECT LENGTH(name)"
"FROM member WHERE memberid = ? "
"AND (juliandate(expiry) -

juliandate('now', 'localtime')) > 0");
break;
case postgresql:
query.prep("SELECT CHAR_LENGTH(name),"
"FROM member WHERE memberid = ? "
"AND (expiry - current_date) > 0");
memberid = memberid.toLower();

break;
case mysql:

� �

(c) Output Schema/Target Code
Fig. 1. A scenario based on real-world patterns observed in large projects. Above: Attribute expiry is added to relation member. Below: Queries are also
adapted. In both cases, one of many possible matching code snippets is shown on the left. The semantic patch comprising two parts (middle) produces the
output on the right for the given target code (left). The scissors mark code not shown.

Apply Semantic Patch

II. THE DEBINELLE FRAMEWORK

We walk through a DeBinelle use case, before we outline
the DeBinelle architecture and workflow.

A complete example: In Figure 1, we show an exam-
ple from a hypothetical, BiblioteQ-like library management
software. This example unifies several patterns that we have
repeatedly observed in real-world projects.

We distinguish three DB variants, to keep the example
manageable. The upper half of Figure 1 shows the addition of
attribute expiry to the relation managing memberships. To
the left, we see an excerpt from one data definition language
(DDL) file, out of many variants (here, PostgreSQL). Top
centre, we see the patch appending the new attribute to the table
declaration. The syntax resembles that of syntactic patches: The
rule header (line 1) declares the patch name, surrounded by the
markers @...@. The header declares meta-variables, where T
matches some SQL type. Starting with line 4, we specify the
transformations. A minus symbol in front of a line states that
matching lines will be removed. Lines leading with a plus
are added. The ellipsis operator � combined with unless
ensures that the patch only matches table declarations where
this attribute does not (yet) exist (for some SQL type T). This
prevents redundant introduction.

Note that the patch can be applied to the input, even though
line 4 in the patch, and line 1 in the table declaration, differ
in the restriction IF NOT EXISTS, as DeBinelle exploits
so-called input isomorphisms. These are sets of semantically
equivalent keywords that can be matched against a given
piece of code. As in [16], DeBinelle input isomorphisms are
compact and—in isolation—easy to write and read (seemingly
trivial even), but effective when collectively applied to the
target code. DeBinelle ships with a customisable library
of such isomorphisms. For example, the following output
isomorphism date_type inserts the correct type, based on
the DB-variant known from the context (here, the file path):

output-iso @ date_type @ @@
variant sqlite => text // SQLite has no date type.

| _ => date

Continuing our example in Figure 1, the closing parenthesis
on line 7 is the anchor for inserting the new attribute. De-
Binelle is SQL-aware and automatically inserts a new comma,
separating expiry from the preceding attribute. SQLite does
not implement a native date type, yet the other DB variants
do. To the top right, we show the modified target code.

This schema change is coupled with code changes: In the
original target code shown bottom left, a SQL query retrieves
the length of library member names. This query is assembled
from strings. In line 2, the control flow diverges: Switch labels
distinguish between database variants.

Bottom centre, we show the DeBinelle patch. Assume that
we need to adapt all such SQL queries accessing the member
relation, so that only active memberships are considered. We
therefore change the where-condition accordingly. (DeBinelle is
aware of SQL syntax and semantics, and automatically inserts
a single space at the end of the where-condition.)

Line 2 of the semantic patch introduces variant anchors,
for SQLite, PostgreSQL, and MySQL. Then, the DeBinelle
conditional vIF matches conditionals in the target program-
ming language that introduce variant scope. For instance, in the
input target code, the C++ switch statement introduces variation
points for SQLite (lines 3–7), PostgreSQL (lines 8–12), and
also MySQL (where the scissors mark code not shown). Thus,
vIF abstracts from imperative conditional statements (and also
matches this switch...case statement).

Note that the input isomorphism stringlen allows for
matching LENGTH(name) from the patch against both lines 5
and 9 in the input target code, even though they differ syntac-
tically. This is ensured by the following input-isomorphism.

input-iso <SQLFunction> @ stringlen @ expression E; @@
LENGTH(E) <=> CHAR_LENGTH(E)

https://github.com/textbrowser/biblioteq


Parsing

Graph matching

Patch generation

Datalog
engine

Native
engine

Input
ISOs

Output
ISOs

Syntactic
patch

Syntactic
patch

DB-variant
schemas

Application
source code

C
od

e
re

po
si

to
ry

D
eB

in
el

le
ar

ch
ite

ct
ur

e
Fig. 2. DeBinelle system architecture and data flow.

SQLite does not support a native date type, but provides built-
in functions for casting strings to dates, and for date arithmetic.
The output isomorphisms read_date and today handle
this, but are not shown, due to lack of space. Line 8 thus
computes the membership expiration date.

Variant anchors, a special class of input isomorphisms,
identify blocks in code that need to be tailored, depending
on the DB variant. The statement variant V:{sqlite,
postgresql, mysql} in line 2 of the patch associates a
variant anchor set—keywords that appear in the target language
source code—with meta-variable V. When matched in the
target code, DeBinelle can infer the database variant for a
block of code, and use this information when expanding output
isomorphisms. Multiple variant anchor sets are required when
a project uses different labels for such anchors (e.g., constants
for switch statements, and substrings in class names). To
the bottom right, we show the output target code.

A real-world example: We next discuss a more complex
example that is modelled after a real use case. The short
semantic patch below converts the combination of CREATE
TABLE and UNIQUE INDEX to a primary key constraint,
effectively joining on the table name. Using manual changes,
the corresponding action in project MediaWiki (modelled after
commit 267d99f) requires inspecting over 200 CREATE
TABLE statements. The output isomorphism @strconcat
ensures the constraints are prefixed by “PK”.

1 @@ sqlid T, A1, A2, I; @@
2 CREATE TABLE T (
3 �
4 + CONSTRAINT @strconcat('PK', T) PRIMARY KEY(A1, A2)
5 );
6 �
7 - CREATE UNIQUE INDEX I ON T (A1, A2);

System architecture: The architecture of our framework
is shown in Figure 2. Structurally, DeBinelle is a variant-
aware, multi-language source-to-source transpiler: The input
are semantic patches, as written by the user of DeBinelle, and

a set of input files in the target languages. This includes SQL-
DDL statements in several database variants, as well as the
application source code, contained within the code repository.
Following usual patterns in compiler construction, DeBinelle
parses the input files into intermediate program representations,
based on control flow graphs (CFGs).

The patch is also parsed into a graph. Input isomorphisms are
expanded on the CFG of the DeBinelle semantic patch. Then,
the patch CFG is embedded into the graph target code CFG.
This embedding can be either computed by leveraging a Datalog
engine, or a native implementation. The matching detects
variation points that require different treatment depending on
the database variant. The final phase performs any replacements
(additions and/or deletions)2 mandated by the DeBinelle
semantic patch and applies output isomorphisms to generate
different syntactic changes for each relevant variant.

III. RELATED WORK

Schema Evolution Tool Support. For practitioners, Flyway,
Liquibase, Rails Migrations, and DBmaestro Teamwork enable
systematic migration between schema versions, supporting most
changes in data definition and modification language (DDL &
DML) files. Most of them generate small programs to perform
the evolution at the schema level. Unfortunately, none of these
tools support collateral evolution. From research, there have
been various contributions for database schema evolution for a
single schema variant. For example, model management [17]
handles multiple schema versions by allowing to match, diff,
and merge existing schemas to derive mappings between these
schemas. PRIMA [18], PRISM & PRISM++ [2], CHiSEL [4],
VESEL [19], ScaDaVer [20], and InVerDA [3] exploit simple
and intuitive schema modification operations (SMOs) for de-
scribing schema evolution, and most of them enable schema and
data migration, as well as automated query rewriting between
the versions. MIGRATOR [21] automatically updates SQL
statements upon the schema changes. Symmetric Lenses [22]
facilitates read and write access along a bidirectional mapping,
while auxiliary tables persist the complements to not lose any
data. With DeBinelle, we can rewrite the multiple DB-variant
specifications of integrity constraints, default values, or types
and stored procedures. Most importantly, DeBinelle is the first
tool, to our knowledge, that even targets collateral evolution.

Software Evolution Tool Support. Eliminating manual
labour and recurring, repetitive tasks by automation is inten-
sively studied in contemporary software engineering research.
For example, the Coccinelle [15] tool lifts patches from a
purely syntactic transformation to a (single) semantic meta-
description from which (multiple) syntactic patches can be
generated for C (and in later versions for subsets of C++ and
Java), but lacks support for generating variant output, which
DeBinelle is capable of. Although numerous research works
focus on refactoring and re-engineering programs, databases
are usually only mentioned as (yet) another component that

2It is possible to specify semantic patches that lead to conflicting actions at
this stage—for instance, inconsistent additions to one given line— which can
be automatically detected. DeBinelle then prompts, to avoid ambiguities.

https://github.com/wikimedia/mediawiki/commit/267d99fa85434c3f26b7c5223cd46c29dedff4e5
www.flywaydb.org
www.liquibase.org
guides.rubyonrails.org/migrations.html
www.dbmaestro.com





Fig. 3. A screenshot of DeBinelle in action. Instead of providing integration
with one specific IDE, a generic command line tool turns a DeBinelle semantic
patch into a series of syntactic patches (as shown in the tool output) for schemas
and code, which can be integrated into any revision control mechanism.

is addressed via an abstraction layer, thus disregarding the
problems addressed by DeBinelle.

IV. DEMONSTRATION SCENARIO

Our demonstration shows the benefits of using DeBinelle in
real-world evolution scenarios. A screenshot of the system is
shown in Figure 3:

Real-World Examples: We will present real-world evolution
scenarios from well-known database applications. We will
show, from github logs scenarios, that the application code,
along with the database schema, evolve. We will point out
the huge maintenance effort, presenting the total lines of code
that require a manual effort, also highlighting limitations of
existing tools.

Introduction to DeBinelle Semantic Patches: Then we will
begin with small examples that will familiarise conference par-
ticipants with the DeBinelle notation, showing the capabilities
of DeBinelle semantic patches. Input and output isomorphisms
will be explained, revealing that adding yet another database
variant introduces just additional isomorphisms.

We will further disclose DeBinelle internals, such as the
Datalog programs computing the mapping between a semantic
patch and the control flow graph obtained from the sources,
focusing on our novel ideas here.

Semantic Patches for Real-World Examples: We will
show that a few lines of multivariate semantic patches are
adequate to support the evolution of both the code and the
database schema, contrasting the effort in terms of lines of
code required for both approaches.

Mini-Game: We will challenge conference participants to
implement specific evolution scenarios, trying to estimate the
lines of code required for the corresponding semantic patch.

Acknowledgments: This project was partly supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) – 385808805, and the BOUNCE H2020 EU project (GA
#777167). We thank Edson Lucas for drawing Figure 2.

REFERENCES

[1] J. F. Roddick, “Schema Evolution in Database Systems: An Annotated
Bibliography,” SIGMOD Rec., vol. 21, no. 4, pp. 35–40, Dec. 1992.

[2] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Automating the
database schema evolution process,” VLDB J., vol. 22, no. 1, pp. 73–98,
2013.

[3] K. Herrmann, H. Voigt, T. B. Pedersen, and W. Lehner, “Multi-schema-
version data management: data independence in the twenty-first century,”
VLDB J., vol. 27, no. 4, pp. 547–571, 2018.

[4] R. E. Schuler and C. Kessleman, “A High-level User-oriented Framework
for Database Evolution,” in Proc. SSDBM’19, 2019, pp. 157–168.

[5] D. Qiu, B. Li, and Z. Su, “An Empirical Analysis of the Co-evolution
of Schema and Code in Database Applications,” in ESEC/FSE, 2013.

[6] P. Vassiliadis, “Profiles of Schema Evolution in Free Open Source
Software Projects,” in Proc. ICDE, 2021.

[7] C. A. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Update Rewriting
and Integrity Constraint Maintenance in a Schema Evolution Support
System: PRISM++,” VLDB, vol. 4, no. 2, pp. 117–128, 2010.

[8] C. A. Curino, L. Tanca, H. J. Moon, and C. Zaniolo, “Schema evolution
in Wikipedia: Toward a Web Information System Benchmark,” in Proc.
ICEIS, 2008.

[9] A. Cleve, M. Gobert, L. Meurice, J. Maes, and J. H. Weber, “Understand-
ing database schema evolution: A case study,” Sci. Comput. Program.,
vol. 97, pp. 113–121, 2015.

[10] P. Vassiliadis, M.-R. Kolozoff, M. Zerva, and A. V. Zarras, “Schema
evolution and foreign keys: A study on usage, heartbeat of change and
relationship of foreign keys to table activity,” Computing, vol. 101, no. 10,
pp. 1431–1456, 2019.

[11] D. Braininger, W. Mauerer, and S. Scherzinger, “Replicability and
Reproducibility of a Schema Evolution Study in Embedded Databases,”
in Proc. ER Workshops, 2020, pp. 210–219.

[12] D.-Y. Lin and I. Neamtiu, “Collateral Evolution of Applications and
Databases,” in Proc. IWPSE-Evol’09, 2009, p. 31–40.

[13] A. Cleve and J.-L. Hainaut, “Co-transformations in Database Applications
Evolution,” in Proc. GTTSE, 2006.

[14] A. Jaimoon and T. Suwannasart, “Impact Analysis of Database Schema
Changes on Hibernate Source Code and Test Cases,” in ICSEB, 2019.

[15] J. Brunel, D. Doligez, R. R. Hansen, J. L. Lawall, and G. Muller, “A
Foundation for Flow-based Program Matching: Using Temporal Logic
and Model Checking,” in Proc. SIGPLAN-SIGACT, 2009.

[16] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, “Documenting
and Automating Collateral Evolutions in Linux Device Drivers,” in Proc.
SIGOPS/EuroSys, 2008.

[17] P. A. Bernstein and S. Melnik, “Model management 2.0: Manipulating
richer mappings,” in Proc. SIGMOD, 2007, pp. 1–12.

[18] H. J. Moon, C. Curino, M. Ham, and C. Zaniolo, “PRIMA: Archiving
and querying historical data with evolving schemas,” in SIGMOD, 2009.

[19] C. Athinaiou and H. Kondylakis, “VESEL: VisuaL Exploration of Schema
Evolution using Provenance Queries,” in EDBT Workshops, 2019.

[20] B. Wall and R. A. Angryk, “Minimal data sets vs. synchronized data
copies in a schema and data versioning system,” in Proc. IPKM, 2011.

[21] Y. Wang, J. Dong, R. Shah, and I. Dillig, “Synthesizing Database
Programs for Schema Refactoring,” in Proc. PLDI, 2019, pp. 286–300.

[22] M. Hofmann, B. C. Pierce, and D. Wagner, “Symmetric lenses,” in Proc.
POPL, 2011, pp. 371–384.


	Introduction
	The DeBinelle Framework
	Related Work
	Demonstration Scenario
	References

