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Abstract—A considerable corpus of research on software evo-
lution focuses on mining changes in software repositories, but
omits their pre-integration history.

We present a novel method for tracking this otherwise invisible
evolution of software changes on mailing lists by connecting all
early revisions of changes to their final version in repositories.
Since artefact modifications on mailing lists are communicated by
updates to fragments (i.e., patches) only, identifying semantically
similar changes is a non-trivial task that our approach solves
in a language-independent way. We evaluate our method on
high-profile open source software (OSS) projects like the Linux
kernel, and validate its high accuracy using an elaborately created
ground truth.

Our approach can be used to quantify properties of OSS
development processes, which is an essential requirement for
using OSS in reliable or safety-critical industrial products, where
certifiability and conformance to processes are crucial. The
high accuracy of our technique allows, to the best of our
knowledge, for the first time to quantitatively determine if an
open development process effectively aligns with given formal
process requirements.

I. INTRODUCTION

Software patches may have come a long way before their

final integration into the official branch (known as mainline or

trunk) of a project. There are many possible ways of integration.

Among others, the origin of a patch can be a merge from

other developers’ repositories (i.e., integration of branches or

patches from foreign repositories), pull requests on web-based

repository managers such as Github or Gitlab, vendor specific

patch stacks, or mailing lists (MLs).

Especially MLs have been in use for software development

processes for decades [17]. They have a well-known interface

(plain text emails), and come with an absolute minimum of

tool requirements (i.e., a mail user agent). Because of their

simplicity, scalability, reliability and interface robustness, they

are still widely used in many open source software (OSS)

projects. In particular, mailing lists are a core infrastructure

component of long-lasting OSS projects such as low-level

systems software (e.g., QEMU, U-Boot, GRUB, etc.), operating
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systems (e.g., the Linux kernel) or foundations (e.g., Apache,

GNU): Mailing lists form the backbone of their development

processes [23]. They are not only used to ask questions, file

bug reports or discuss general topics, but implement a patch

submit-review-improve strategy for stepwise refinement [41]

that is typically iterated multiple times before a patch is finally

integrated to the repository (cf. Figure 1).

Therefore, MLs contain a huge amount of information on

the pre-integration history of patches. A commit in a repository

may be the outcome of that process, while all intermediate

steps leave no direct traces in the repository. Mailing lists allow

us to analyse development history and code evolution, but also

enable us to inspect reviewing and maintenance processes.

They further allow inferring organisational [30] and socio-

technical [12, 22, 40] aspects of software development. This

all is possible because MLs contain information on interactions

between developers.

Nowadays, open source components are routinely deployed

in industrial fields, and their use is increasingly explored in

safety-critical or mixed-criticality appliances [14], such as

medical devices or in automotive products. Especially for core

components of a system that implement business-wise non-

differentiating features such as the system-software stack or

middleware, OSS provides adequate solutions that have already

proved to be reliable in other non-critical application domains.

However, non-functional aspects like evidences of quality

assurance are also a crucial factor for industry. Deployment

of software in safety-critical environments requires confor-

mance with international standards, such as ISO 26262 [26],

IEC 61508 [24] or IEC 62304 [25]. This demands certified

development processes that implement high standards regarding

traceability and auditability of all development decisions, in-

cluding code writing, reviewing, deployment, and maintenance

activities (the rationale for strict process compliance is to

achieve and prove high product quality).

Compared to conventional, orthodox proprietary industrial

software, OSS exhibits different dynamics [35], and often

requires fundamentally different development processes [15]

because of project size and a high number of massively geo-

dispersed stakeholders. Because of this nature of OSS, projects

do not necessarily meet certification criteria [13].

Nevertheless, vendors across different industrial sectors share

similar concerns on the use of OSS components [18, 19]:
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Figure 1: Typical workflow: A patch gets resubmitted and improved for two times, before its integration

OSS projects are community driven. Hence, their established

processes can only be applied to a certain degree. Quantitative

ex-post analyses of processes are required to investigate

conformance. Statistical methods are necessary to judge the

applicability of OSS components in different scenarios. This

makes it possible to reconstruct process operations, and use

them to draw conclusions on processes with quantitative

software-engineering techniques. However, how to do this is

an unsolved issue in industry [31, 32].

To assess non-formal OSS development processes, mapping

patches on mailing lists to repositories is a key requirement,

because the mails contain the facts: They are the artefacts of

the development process. Together with the outcome of the

process—the repository—, this forms a solid base for further

analysis. Patches that appear on mailing lists are manually

selected (cherry-picked) by the maintainer before integration

into the repository. They are also routinely combined (squashed)
and modified (amended) on-the-fly, which is convenient for

developers, but complicates tracking. Either way, a direct

connection between the history on the mailing list and the

repository commit is lost in the process [11].

We present a method accompanied by comprehensive auto-

mated tool support1 that allows us (a) to track several revisions

of a patch on a mailing list, and (b) to map those patches on

the list to upstream commit hashes, if the patch was integrated.

We identify and formalise the problem as cluster analysis, and

provide an in-depth evaluation of our and other approaches.

Both problems are reduced to finding similar patches. We

quantify the accuracy of the approaches with elaborate external

validation measurements based on a ground truth in Section IV.

We claim the following contributions:

● A novel, highly accurate methodology to reconstruct the

missing link between mailing lists and repositories on

noisy real-world data.

● A precise formalisation of the problem, together with a

previously unavailable elaborate external validation of our

algorithm based on a proper ground truth, together with

a qualitative evaluation of other approaches.

1Published under the GPLv2 license at https://github.com/lfd/PaStA

● An industry-grade, fully published and extensible frame-

work that allows for further in-depth analyses and scales to

handle the world’s largest software development projects.

Results of the evaluation of the Linux kernel and its principal

ML underline the high accuracy of our approach.

II. RELATED WORK I

A patch consists of an informal commit message that

describes the changes of the patch in natural language, and

annotations of the modifications to files of a project. First and

foremost, patches modify source code, but also documentation,

build system, tools and any other artefacts of a project. A

single patch may modify several files. Within the context of a

file, chunks (also known as hunks) are segments that describe

changes to a certain area within a file. Figure 2 illustrates

the typical structure of patches on the ML (a, b) and in the

repository (c). We need to find similar patches to track patch

evolution.

Jiang, Adams and German [28] present a coarse-grained

checksum-based technique for mapping emails that contain

patches to commits. After trimming whitespaces they calculate

MD5 hashes over chunks of the patch. Two patches are

considered similar if they have at least one checksum in

common (i.e., share one equivalent chunk).

In another work [29], the authors refine their technique and

present further approaches: A plus-minus-line-based technique

and a clone-detection-based technique. The plus-minus-line–

based technique weights the fraction of equivalent lines of two

patches. This includes insertions (+) and deletions (-). The

clone-detection–based technique incorporates CCFinderX [9],

a code-clone detector. They evaluate their three techniques,

and conclude that the plus-minus-line–based technique is

performing best. This evaluation is based on the F-Score that

depends on the precision and recall of the actual algorithm.

In contrast to measuring the precision, the F-Score requires a

ground truth for determining the recall. As a ground truth is

hard to obtain, authors use the concept of relative recall that

provides a qualitative approximation.

We presented a method and a tool to identify similar patches

in different branches of a repository [36]. They use their
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method to quantify integration efforts of huge software forks,

like the PREEMPT_RT real-time patch for the Linux kernel,

or hardware-vendor–specific forks of the Linux kernel. The

problem is to find patches that first appeared in a development

branch, and were later applied to the master branch of the

project. Yet, this work misses a proper quantitative evaluation,

and only operates on commits within a repository.

III. RESEARCH METHODS

From an analytical standpoint, the downside of patch

submission on mailing lists is asynchronicity, as there is no

direct connection between the mailing list and the software

repository. Maintainers manually integrate patches from the list

and commit them to the repository. This process is typically

assisted by tools provided by the version control system.2

During this process, the connection of the email with the patch

(identified by the unique Message-ID header of the mail) and

the commit in the repository (usually identified by a commit

hash) is lost.

Other difficulties are contextual divergences and textual

differences [11]. The commit in the repository may significantly

vary from the patch on the mailing list, as other patches between

submission and integration might have affected the patch.

Additionally, maintainers may introduce additional changes

to the patch.

There is also no connection between several revisions of a

patch within the mailing list. A patch undergoes a certain

evolutionary process between revisions, hence patches of

different revisions may significantly differ as well, while they

still introduce the same logical change.

A. Code Submission Workflow

Independent of the type of submission, a patch p is formally

defined as a 2-tuple that consists of a commit message and

a diff. While the commit message informally describes the

changes, the diff annotates the actual modifications (insertions

and deletions) surrounded by a few lines of context. Context

lines ease the understandability of the patch for human review.

Patches can also include meta information, such as the author

of a patch or the timestamp of its creation (Author Date).

Not all types of patches contain the same set of metadata.

Emails with patches contain several mail headers, while those

headers are removed when the patch is applied to the repository.

Repositories, in contrast, contain information on the exact

spatial location of the patch.

Metadata may also change over time [10, 21]; even the

author of a patch may change. Therefore, we intentionally do

not consider metadata in our similarity analysis.

Mapping patches on mailing lists to commits in repositories

requires to understand common workflows in projects [17]:

When the author of a patch wants his or her patches to be

integrated in the project, they need to send their patch or patch
series to the mailing list of the project.

2e.g., git am (apply mail from mailbox) or git cherry-pick (apply the changes
introduced by some existing commits)

Message-ID: <1338734589-11512-3-git-send-email-tias@ulyssis.org>
Date: Sun, 3 Jun 2012 16:43:04 +0200
To: Discussion and development of BusyBox <busybox.busybox.net>
From: Tias Guns <tias@ulyssis.org>
Subject: [PATCH 2/6] android: use BB_ADDITIONAL_PATH

Signed-off-by: Tias Guns <tias@ulyssis.org>
---
include/platform.h | 4 ++++
1 file changed, 4 insertions(+)

diff --git a/include/platform.h b/include/platform.h
index d79cc97..f250624 100644
--- a/include/platform.h
+++ b/include/platform.h
@@ -334,6 +334,10 @@ typedef unsigned smalluint;
# define MAXSYMLINKS SYMLOOP_MAX
#endif

+#if defined(ANDROID) || defined(__ANDROID__)
+# define BB_ADDITIONAL_PATH ":/system/sbin:/system/bin:/system/xbin"
+#endif
+

/* ---- Who misses what? ------------------------------------ */

--
1.7.10

(a) [PATCH 2/6] in a series: the author adds some conditional
preprocessor definitions

Message-ID: <1338734589-11512-4-git-send-email-tias@ulyssis.org>
Date: Sun, 3 Jun 2012 16:43:05 +0200
To: Discussion and development of BusyBox <busybox.busybox.net>
From: Tias Guns <tias@ulyssis.org>
Subject: [PATCH 3/6] android: fix ’ionice’, add ioprio defines

patch inspired by ’BusyBox Patch V1.0 (Vitaly Greck)’
https://code.google.com/p/busybox-android/downloads/detail?name=patch_busybox

Signed-off-by: Tias Guns <tias@ulyssis.org>
---
include/platform.h | 2 ++
1 file changed, 2 insertions(+)

diff --git a/include/platform.h b/include/platform.h
index f250624..ba534b2 100644
--- a/include/platform.h
+++ b/include/platform.h
@@ -336,6 +336,8 @@ typedef unsigned smalluint;

#if defined(ANDROID) || defined(__ANDROID__)
# define BB_ADDITIONAL_PATH ":/system/sbin:/system/bin:/system/xbin"

+# define SYS_ioprio_set __NR_ioprio_set
+# define SYS_ioprio_get __NR_ioprio_get
#endif

--
1.7.10

(b) [PATCH 3/6] in a series: the author adds further definitions
under the same condition

commit 3645195377b73bc4265868c26c123e443aaa71c6
Author: Tias Guns <tias@ulyssis.org>
Date: Sun Jun 10 14:26:32 2012 +0200

platform.h: Android tweaks: ioprio defines, BB_ADDITIONAL_PATH

Signed-off-by: Tias Guns <tias@ulyssis.org>
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>

diff --git a/include/platform.h b/include/platform.h
index d79cc97..ba534b2 100644
--- a/include/platform.h
+++ b/include/platform.h
@@ -334,6 +334,12 @@ typedef unsigned smalluint;
# define MAXSYMLINKS SYMLOOP_MAX
#endif

+#if defined(ANDROID) || defined(__ANDROID__)
+# define BB_ADDITIONAL_PATH ":/system/sbin:/system/bin:/system/xbin"
+# define SYS_ioprio_set __NR_ioprio_set
+# define SYS_ioprio_get __NR_ioprio_get
+#endif
+

/* ---- Who misses what? ------------------------------------ */

(c) Maintainer squashed both mails to one commit and amended the
commit message

Figure 2: Example of two mails and one commit that were

automatically found and linked by our tool
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A patch series is a cohesive set of mails that contain several

logically connected patches that, in the big picture, introduce

one logical change that is split up in fine granular steps. Figure 2

(a) and (b) show two successive mails in a patch series. The

submission of a patch or patch series is typically tool-assisted

by the version control system.3

After patches are submitted, reviewers or any subscriber

of the list may comment on them. This is done by starting

a free-form textual discussion by replying to a mail. Inline

comments refer to the related code lines.

Concerning change integration, the reviewing process may

end up in the following scenarios: (1) The maintainer decides to

integrate (commit) the patch(es), (2) the maintainer decides to

reject the patch(es), (3) the patch(es) need further improvement

and need to be resubmitted to the list. It is not unusual that

(3) is repeated several times. In this case, further revisions of

the patch are typically tagged in the email subject header with

[PATCH v<N>] prefix, where <N> denotes the the revision

round. This iterative process of resubmitting further revisions

of changes is a fundamental aspect of the development process

and makes it necessary that a patch on a mailing lists must not

only be linked to the repository, but also against other revisions

of the patch in order to track its evolution. Figure 1 illustrates

a typical workflow: a patch was resent two times (v2 and v3),

before being integrated to the repository.

Once maintainers decide to accept a patch, they may

still amend the commit message or the code. Depending on

the submission process of the project, maintainers or other

persons working on the patch add additional tags to the com-

mit message, such as Acked-by: <mail>, Tested-by:
<mail>, Signed-off-by: <mail> among others.

Reviewers that vote for inclusion of the patch reply to

it with a mail that adds an Acked-by, where <mail>
contains the email address of the person who acknowledged

the patch. Anyone who successfully tested a patch may

send their Tested-by. The Signed-off-by tag indicates

that the patch conforms with the Developer’s Certificate of

Origin4. Maintainers pick up mails with such tags (i.e., mails

In-Reply-To the initial patch) and append them to the

commit message before integration.

A patch on a list may significantly differ from its final

version in the repository, which makes it hard to link them.

Figure 2 demonstrates the complexity of finding similar patches.

This examples contains two patches that appeared on the

mailing list of BusyBox [4] and the eventual commit in

the repository. In this case, the maintainer (Denys Vlasenko)

heavily changed the original patches (authored by Tias Guns)

that were sent to the project’s mailing list: He picked up both

mails, consolidated them to one commit (known as squashing
patches) and additionally changed the commit message. During

this process, metadata changed as well: the author date of the

commit message is neither related to [PATCH 2/6] nor to

[PATCH 3/6]. Still, both emails are related to the commit

3e.g., git format-patch in combination with git send-email
4see Linux’s Documentation/process/submitting-patches.rst

in the repository, and mails and commit were automatically

linked by our tool.

The complexity of finding similar patches is aggravated

by the fact that patches are relative to a specific state of the

code base, determined by the commit where the patches base

on. When the latter changes between the time a patch was

submitted and it was integrated, as other patches had been

applied meanwhile, the version control system tools try to

(semi-)automatically adopt the changes, which leads to different

context information despite identical changes. If automatic

methods fail, merge conflicts must manually be solved by

humans.

Multiple maintainers may commit the same patch to their

own branch. In this case, a patch occurs multiple times on

the master branch of the repository, once those branches are

merged.

Those and other facts [10, 29] underline that similar patches

can not be simply linked against each other by examining their

textual equality.

B. Linking similar patches

We use and extend the method that we presented in [36] to

work on mailing lists.

Let C be the set of all patches (commits) in a software

repository, andM be the set of all patches on a mailing list

(mails containing patches). The universe U =M∪C forms the

set of all patches.

In its most general form, the informal equivalence relation

S ∶ patches are semantically similar can be defined as S ⊆ U×U .
This covers all eventualities, including situations like patch
committed twice in the repository or patch went through several
rounds of review before integration.

The algorithm in [36] is able to quantify the similarity of

two patches within a repository by four parameters (explained

in Section III-C) that influence the sensitivity of the algorithm.

It measures the similarity of two patches

simtf,th,dlr,w: U × U → [0,1] (1)

where 0 denotes complete dissimilarity (i.e., no commonalities)

and 1 denotes complete equivalence on a textual level. Note

that symmetry

∀a, b ∈ U ∶ simtf,th,dlr,w(a, b) = simtf,th,dlr,w(b, a) (2)

and reflexivity

∀a ∈ U ∶ simtf,th,dlr,w(a, a) = 1 (3)

hold.

Let V = U be the set of all vertices of the undirected graph

G = (V,E). Every edge in E connects two patches that exceed

the threshold ta:

E = {{a, b} ⊆ U ∣simtf,th,dlr,w(a, b) > ta} (4)

The connected components of G form subgraphs of similar

patches that divide U into disjoint partitions. Those partitions

induce equivalence classes

[x]S = {y ∈ V ∣x↝G y} (5)
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where ↝G denotes reachability. We use ∼S to denote the

corresponding equivalence relation, and can use sim to de-

termine all equivalence classes by pairwise patch comparison

in a process that iteratively merges equivalence classes where

the similarity of two patches exceeds a certain threshold ta

(cf. Figure 3). Section III-D describes how we overcome

resulting combinatorial explosion.

From another perspective, the partition of the equivalence

relation S can also be seen as an unsupervised threshold-based

flat clustering of U [39]. In Section IV, we will use this fact to

evaluate the accuracy of the approach with external evaluation

methods for clusterings.

With this, we reduced the problem of finding clusters of

similar patches to a function sim, which rates the similarity

of two patches. In the following, we will introduce sim, the

function that scores the similarity of two patches, and its set

of parameters that control the sensitivity of the function.

1) Rating similarity of two patches: As mentioned above,

patches evolve over time. While the commit message and the

code may change, they still introduce the same logical change.

As the commit message and diff may evolve independently, we

calculate two independent scores that quantify the similarity of

the two commit messages and the similarity of the two diffs

(rmsg, rdiff ∈ [0,1]). Again, 0 means no commonalities while 1
means equivalence on a textual level.

a) Similarity of commit messages: Maintainers may

amend or reword commit messages before they integrate the

patch. They can also rearrange or reformat the patch to make

it easier to understand, or to avoid ambiguities. Nevertheless,

keywords that are used in those messages tend to remain the

same. Before comparing commit messages, we remove all tags

that were added by maintainers, as they do not appear in the

initial patch. The next step is to tokenise and sort all words in a

commit message. The tokens are separated by whitespaces. We

then pairwise compare them against each other by using the

Levenshtein string distance [33]. We select the closest match

for each token. The arithmetic mean over all matches forms the

score rmsg. We chose the Levenshtein string distance together

with tokenisation, as it respects restructured messages as well

as minor changes in wording, such as typo fixes.

b) Similarity of diffs: Even if code changes or evolves

over time, we observed that different versions of a patch

very likely still affect the same code paths and files and use

similar keywords or variable names. We compare diffs in an

iterative process. A single patch may modify several files.

When comparing the diff component of two patches, we only

consider changes to files with similar filenames. The threshold

of the Levenshtein similarity for filenames is determined by

the parameter tf, which must be exceeded if the diff of two

files is considered for actual comparison. A diff of a given

file may consist of several hunks, which describe changes to a

certain section within the file. Hunks are annotated with the

line number within the file and a hunk header that describes the

context of the change (cf. Figure 2). They display "the nearest

unchanged line that precedes each hunk" [34]. We pairwise

compare all hunks of the two diffs against each other, but

α

β

U

U

Figure 3: α: sim determines the similarity (edge weights) of

patches. Dashed edges remain below the threshold ta = 0.80.
β: Connected components above the threshold form equiva-

lence classes of similar patches. Green and orange vertices

exemplarily denote patches on ML and commits respectively.

only consider hunks with hunk headers that exceed a certain

similarity th. Hunks for which a mapping can not be established

are ignored, as the hunk might have been added or removed

in one of the patches. To compare those hunks, we disregard

context lines as they might have changed in the meanwhile,

compare insertions only against insertions, and deletions only

against deletions. Therefore, we again tokenise deletions resp.

insertions and use the Levenshtein string distance to compute a

score for the hunk. The arithmetic mean of scores of all hunks

provides the similarity score for the diff, rdiff.

C. Parameters

The extensive use of string metrics for measuring the

similarity of different parts of a patch opens a wide spectrum

for different thresholds of similarity. Additional parameters (tf,

th, dlr, w, ta) investigate the structure of the patch and control

the sensitivity of the comparison.

a) tf: filename threshold: A file might have been renamed

in the time window between the submission and acceptance of

a patch. As mentioned above, we only consider the pairwise

comparison of files with a similar filename. The filename

threshold (tf ∈ [0,1]) denotes a similarity threshold for
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filenames that must be exceeded if two files shall be considered

for comparison.

b) th: hunk header threshold: Within a file, the location

of a hunk might have moved in the time window between

submission and acceptance of a patch. Either the author moved

the location of the hunk, the upstream location changed or

a maintainer moved the code. Hunk headings try to ease the

readability of the patch. Regular expressions backward-search

for anchor lines that will appear in the hunk heading, such as,

e.g., function names. The hunk heading threshold (th ∈ [0,1])
denotes the similarity of two hunk headings of hunks that must

be exceeded if two hunks shall be considered for comparison.

c) dlr: diff-Length ratio: Similar patches only slightly

differ in size. It is unlikely that a patch that modifies one single

line is related to a patch that affects hundreds of lines. Because

of this, patches are considered dissimilar if the diff-length ratio

(dlr ∈ [0,1]), which is the fraction of the number of changed

lines of the smaller patch by the number of lines patched by

the bigger patch, is not exceeded.

d) w: commit-diff weight: Since we calculate two inde-

pendent scores for the commit message and for the diff, a

heuristic factor w ∈ [0,1] weights the relative importance of

rdiff to rmsg and denotes the overall similarity:

simtf,th,dlr,w(a, b) = ⎧⎪⎪⎨⎪⎪⎩
0 if min(a, b)/max(a, b) < dlr
w ⋅ rmsg(a, b) + (1 −w) ⋅ rdiff(a, b) else

(6)

e) ta: auto accept threshold: The auto accept threshold ta

denotes the required score for patches to be considered similar.

Patches are only considered similar, if

simtf,th,dlr,w(a, b) ≥ ta (7)

Section IV investigates the significance of the chosen set of

parameters.

The selection of these metrics is based on domain specific

expert knowledge of the Authors, which is provided by

participation and contributions in a range of OSS projects,

and during the development of our tool. We observed some

peculiarities of patches that can be used to parameterise the

comparison:

1) Files may be moved in the repository between submission

and acceptance of a patch.

2) Files in the repository may undergo other changes

between submission and acceptance of a patch. This

might lead to merge conflicts that have been resolved.

Merge conflicts change the context of a patch.

3) It is unlikely that small patches (e.g., one-liners) are

related to a huge patch (e.g., feature-introducing patches

that add thousands of lines).

4) Different projects have different maintenance strategies.

In some projects, maintainers heavily modify commit

messages (see Figure 2), in other projects maintainers

might leave the commit message as it is, but modify the

code.

D. Reduction of problem space and clustering patches

The major practical challenge of our approach is scalability.

Consider a huge project like the Linux kernel. Our mailing

list archive reaches from 2002-01 – 2018-07 and contains ≈
2.8 ⋅ 106 mails where ∣M∣ ≈ 8.5 ⋅ 105 mails contain patches.

The corresponding upstream range (v2.6.12–v4.18) contains∣C∣ ≈ 7.6 ⋅ 105 commits. This leads to a patch universe of∣U ∣ ≈ 1.6 ⋅ 106 entries, with a total number of (∣U∣
2
) ≈ 1.3 ⋅ 1012

pairwise comparisons.

In a preevaluation phase, we drastically reduce the impracti-

cal number of pairwise comparisons. First and foremost, we

only consider pairs of patches for comparison within a certain

time window. Two patches will only be considered for similarity

rating, if they were submitted within a time window of one

year. In the evaluation, we show that this covers 99.5% of all

patches. Secondly, two patches can not be similar if they do

not modify at least one common file. This fact can be used

for further optimisation: we select only pairs of patches, that

modify at least one similar file.

In addition to that, we first determine clusters of similar

patches for emails (M×M). At the beginning of the evaluation,

every email is assigned to its own single-element cluster. We

successively merge clusters in an iterative process by comparing

representatives of clusters against each other. A representative

of a cluster is the patch with the youngest submission date. We

choose this patch as representative, as it will have the closest

similarity with further revisions, or with the commit in the

repository, if it was integrated.

After the creation of the clusters for emails, representatives

of those clusters are compared against the commits in the

repository.

E. Working with mailing list data

The first step of the process is the acquisition of mailing

list data. This can be done by subscribing to mailing lists and

collecting data; historic data can be received from archives of

a list.

The second step is to filter relevant emails containing patches

and to convert them to a unified format that can be used for

further processing [12]. There are plenty of methods how a

user may send a patch, or how the mail user agent (MUA)

may treat the message. Our parser is able to identify the most

commonly used methods. It respects patches in attachments,

(mis-)encoding and different mail parts.

IV. EVALUATION

The results of a heuristic method depend on the chosen set of

parameters. In the following, we identify significant predictors

from the available set of tuneables, and further evaluate the

algorithms accuracy for the optimal choice.

To establish a ground truth, we chose a one-month time

window (May 2012, a typical month of Linux kernel develop-

ment without any exceptional events) of the high-volume Linux

Kernel Mailing List5 (LKML). We extracted mails with patches

5linux-kernel@vger.kernel.org
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Table I: Set of parameters result used for evaluation

Parameter Description Interval Step

tf threshold filename [0.60,1.00] 0.05
th threshold heading [0.15,1.00] 0.05
dlr diff-length ratio [0.00,1.00] 0.10
w message-diff weight [0.00,1.00] 0.10
ta threshold auto-accept [0.60,1.00] 0.01

and manually compared them against a three month time

window in the repository in an elaborate and time-consuming

task using interactive support of our tool. The creation of

a sound ground truth requires domain-specific knowledge to

judge the relationship of patches, which is available by some of

the authors’ active involvement in the respective communities.

We then analysed the same data with our automated approach,

under permutation of parameters in a reasonable range, as

shown in Table I. Prior to choosing the exact parameter ranges,

we performed a coarse-grained analysis to roughly estimate the

influence of parameters. The chosen domains result in 803682

different analysis runs.

In the observed time frame, the list received 16431 emails.

Among these, we identified 5470 containing patches (33.3%).

Assisted by our tool (and supported by an interactive interface

that ensures a swift workflow), the patches were compared

against all commits between Linux kernel versions v3.3
and v3.6 (34732 commits). Those commits are within the

time window 2012-03-18 – 2012-09-30 (see Section IV-B for

a justification of this choice).

The ground truth consists of 3852 clusters of patches, where

2525 clusters are linked to at least one commit in the repository.

990 clusters contain more than one email (e.g., multiple

revisions of a patch), 394 clusters more than two emails, and

154 more than three emails. 1712 clusters contain exactly one

email, which means the changes were immediately accepted

after their initial submission without further refinements.

The ground truth is then compared against all clusters from

the permutation of parameters as shown in Table I. In other

words, we compare the ground truth against the 803682 results

of our tool.

A. External Evaluation

External evaluation methods quantify the similarity of two

clusterings [39]. While there are many standard evaluation meth-

ods available, the correct choice relies on the structure of the

clustering [2]. In contrast to typical clustering problems where

a large number of elements (e.g., documents) is distributed to

a small number of clusters (e.g., document types), our problem
entails a large number of clusters (similar patches) with only

few elements (patch revisions and commits in repositories)

per cluster. This inherently implies a considerable number of

“true negatives” (TN), since two randomly chosen elements are

assigned to two distinct clusters with high probability. For a

sufficiently large number of clusters, any random clustering

will exhibit a high number of TNs.

We tested several external evaluation methods for their

suitability: mutual information score [39], purity [39], V-
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Figure 4: Boxplot of irrelevant parameters: filename and hunk

header threshold have no substantial influence.
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Figure 5: Illustration of the influence of autoaccept threshold,

diff-length ratio and the message-diff weight (connecting lines

in all figures are used to guide the eye).

measure [37], and the Fowlkes-Mallows index [20]. Purity

is not suitable for our problem because it intrinsically produces

good results for large cluster count. A high number of clusters

always implies good purity [39]. The V-measure is the harmonic

mean of two other measures, completeness and homogeneity,

and also produces good results when many clusters are present.

We consequently choose the Fowlkes-Mallows index, since

it is not sensitive to the number of TN, and shows robust

results for clusterings with a high number of clusters. The

Fowlkes-Mallows FM index is defined as

FM =√ TP

TP + FP ⋅ TP

TP + FN , (8)

where TP denotes the number of true positives, and FP and FN

provide the number of false postives and negatives, respectively.

A way to confirm the validity and suitability of an index is to

compare it against an unrelated clustering [39]. Therefore, we

compare the ground truth against a random clustering, while

maintaining the structure of the clustering, that is, the number

of clusters and the number of elements per cluster. Compared
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against the ground truth, this reveals a bad Fowlkes-Mallows

index of 0.05. Since the results for our analyses lie within

the interval [0.231,0.911], this indicates a high validity of the

chosen index.

To identify parameters with a relevant influence on the result,

we compute the Fowlkes-Mallows index for each of the 803682

clusterings against the ground truth. This provides a similarity

score for clusterings for each combination of parameters.

To draw conclusions on the significance of a parameter, we

selectively observe the distribution of the Fowlkes-Mallows

index for each parameter. Figure 4 illustrates the Fowlkes-

Mallows index for different values of the filename threshold

resp. the hunk header threshold. We found that different settings

for tf and th have little influence on the results. Instead, best

results are achieved for the boundary setting 1 in both cases

(we analyse the reason for the behaviour Section V). For the

further analysis, we only regard the subset of our results with

tf = 1 and th = 1 due to their lack of significance. This requires

to consider 2662 clusterings.

Figure 5 shows the plot of the mean of the Fowlkes-Mallows

index for autoaccept threshold, diff-length ratio and message-

diff weight. Having the filename and hunk header threshold set

to 1, our approach performs best with a autoaccept threshold

of 0.82, a diff-length ratio of 0.4 and a message-diff weight

of 0.3. With this combination, it achieves a Fowlkes-Mallows

index of 0.911 on the selected time window.

To confirm the universal validity of those parameters for

the whole project, we cross check the parameters with another

mailing list: the linux-commits-tip mailing list. Every patch

that is committed to the Linux tip repository is automatically

sent to the linux-commits-tip mailing list [28] by the tip-bot.

In contrast to standard emails, they contain the commit hash

in the corresponding repository in their header. This allows for

simple cross-validation of the best parameter set. The list can

be used to prove the general functioning of the approach, as

the analysis should lead to an exact match of all patches.

Using a sample of 1047 emails from linux-tip-commits ML

compared to the linux-tip-commits repository, we obtain a

Fowlkes-Mallows index of 0.988. Some minor mismatches

are caused by very close, but still dissimilar patches that are

erroneously considered similar, and induced by technical corner

cases where the diff for a patch being sent to the mailing list

produces different output as the diff in the repository (e.g.,

mode-changes of files or moved files). In sum, there were 1086

TPs, 18 FPs, and 9 FNs. Note that there are more TPs than

actual emails, because some clusters correctly contain more

than one email or more than one commit; a correct cluster

with n elements contains (n
2
) TPs. Once more, these numbers

underline the high accuracy of our approach.

B. Example: Duration of patch integration

Comparing patches is a computationally intensive task. The

number of comparisons can be reduced if potential comparison

candidates are restricted to patches within a certain time

window, as less patches are considered for the eventual cost-
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Figure 6: Empirical distribution function of the integration

duration of patches on the LKML

intensive comparison. Our tool already provides a set of

qualitative analyses, such as the integration duration of a patch.

To determine the size of this window, we re-run the analysis

on the whole LKML and the whole repository with the

determined optimal set of parameters. We define the time

interval between the date of the latest revision of a patch

(i.e., email submission date) and the date of integration in the

repository (i.e., the commit date) as integration duration.

Figure 6 shows the empirical distribution function of the

integration duration of all patches of the 99.9% quantile of all

patches. Interestingly, within the outliers beyond that quantile

we found patches that took indeed five years for integration.

99.5% of all patches were integrated within one year, 80%

of all patches within 40 days, 50% of all patches within one

week.

C. Comparison to other approaches

In [29], Jiang and colleagues also present a method for

mapping patches on mailing lists to repositories. Their Plus-

Minus-based approach assigns each tuple of changed line

and filename to a set of ids, where the id can either be a

message ID or a commit hash. They then search for patches

that contain sufficient identical changes. A threshold between[0,1] determines the fraction of the number of identical changes

that needs to be exceeded if patches are considered similar.

We used their original implementation to evaluate it against

the time window of our ground truth, and vary their threshold

setting in the range [0,1]. Figure 7 shows the results of

the analysis. The threshold has no significant impact on the

accuracy within the range ≈ [0.25,0.75]. The best Fowlkes-

Mallows index of 0.743 that we could reach with their method

is observed at threshold 0.26.

V. DISCUSSION

We previously showed the high accuracy of our method,

and quantitatively compared it with other existing techniques

methods. We will now turn our attention to interpreting the

meaning of the optimal set of tuneable parameters, further
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Figure 7: Evaluation of the Plus-Minus-based approach: highest

FM index at 0.26, while the threshold only has little influence

between [0.25,0.74]
discuss other methods, and examine the performance (and,

thus, practical applicability) of our approach.

A. Our algorithm

In Section IV we found that both, filename and hunk header

threshold, produce best results for the boundary value 1.00. A

filename threshold of 1.00 implies that patches on the list will

not be associated with a commit in the repository if affected

files were renamed between submission and integration of

the patch, and the hunk header threshold of 1.00 disregards

relocations of a hunk within a file. The rationale for these

extreme settings is that both, file moves and relocations within

a file, do not occur frequently in real-world development.

It is unlikely that a patch hits this exact window. While a

lower threshold improves recall, it disproportionally decreases

precision since more patches are erroneously considered similar

when relocations occur.

In contrast to filename and hunk header threshold, other

parameters significantly influence the results: auto accept

threshold, diff-length ratio and message diff weight. As

expected, too strong or too weak thresholds lead to over-

and underfitting. The diff-length ratio of 0.4 is reasonable

because it allows, for instance, an initial two-line patch to

expand into five-line patch in a future revision, but filters

for strongly imbalanced sizes of patches. It is, for instance,

unlikely that a one-line patch will evolve into a 20-line patch in

a future revision. A message-diff weight of 0.3 underlines the

importance to consider both, commit message and diff, with

a slight bias towards the code. It also stresses that involving

actual code for analyses is vital.

B. Plus-Minus-based approach

While not explicitly mentioned in their paper, the authors

of [29] chose a threshold of 0.5 for their algorithm, based on

their experience and intuition[1]. Our evaluation of the Plus-

Minus-based approach shows evidence that this threshold is

within a range where the algorithm performs best.

The authors determine the accuracy of their approach based

on the F-Score, defined as F = 2 ⋅ precision⋅recall
precision+recall

. It requires

knowledge of precision and recall. While calculating precision

is straightforward (i.e., counting the number of true and false

positives), a solid ground truth is required to determine the exact

recall of an algorithm, as the recall requires to know the number

of false negatives. They argue that it is hard to determine such

a ground truth (a statement that we fully agree with), and

therefore employ the concept of “relative recall”. The relative

recall incorporates results of the checksum–based technique

and the clone-detection–based technique. The accuracy of these

approaches is not known and therefore relative recall only forms

an approximation with unknown quality. Hence, we think that

our determined ground truth leads to more precise results.

C. Performance

Performance is an important factor for real world practicabil-

ity. In particular, a well-performing implementation is required

for the evaluation of the optimum parameter set, as it requires

to run several analyses. Therefore, we massively parallelise

steps of the analysis.

The full analysis of the Linux kernel (v2.6.12 – v4.18 against

the whole ML) with our method requires 13 hours on a machine

equipped with two Xeon E5-2650 processors (20 cores / 40

threads) using the optimal thresholds derived in Section IV.

This includes run-once preparation steps like converting mailing

list data to a suitable format, parsing mailing lists for patches

or creating caches.

We were not able to run the full analysis of the Linux

kernel with the plus-minus-line–based approach, because of

limitations of their implementation.

Nonetheless, we found that the plus-minus-line–based ap-

proach is considerably more performant than our approach.

For the one-month test set, the approach takes 80 seconds on

the same machine as mentioned before, and only consumes

one single CPU core. Our approach takes between two and

eight minutes to analyse the same set, depending on selected

thresholds. The comparison of textual equivalence used by the

plus-minus-line–based technique is less computation-intensive

than our use of Levenshtein string distances.

Yet, our approach is applicable for real world use cases and

its best Fowlkes-Mallows index is 22% higher than the best

score achieved by the plus-minus-line–based approach.

VI. THREATS TO VALIDITY

A. External Validity

We focus on the Linux kernel for the evaluation, which has

strict submission guidelines, such as requiring detailed commit

messages. Patches must be structured in a fine-grained fashion

and must only introduce one small change. Other projects

established different strategies, such as less-verbose commit

messages or larger patches.

Because of this fact, our set of parameters that we found in

the evaluation are therefore thresholds that suit Linux, but are

not necessarily applicable to other projects. As a consequence,

this demands to repeat the evaluation, when analysing other
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projects that the Linux kernel, in order to determine its proper

set of thresholds.

However, numerous other low-level systems that are object

of our analyses adopted the submission guidelines of the Linux

kernel that are known as best practises in the communities.

While not mentioned in this paper due to its length, the same

set of parameters lead to high accuracy in other such projects

(e.g., QEMU, Busybox, U-Boot, . . . ).

B. Internal Validity

Other than a perfect gold standard, a manually created ground

truth underlies some uncertainties. The creator may be biased

or misjudge decisions, and there is always a certain degree of

subjectivity. The creation of our ground truth (judging similarity

of patches) was carefully done by an experienced developer

with domain-specific knowledge and a track record of active

participation in several open source communities, including

the Linux kernel, and we are confident that our ground truth

contains negligible faults.

C. Construct Validity

Working with mailing lists requires handling noisy data.

Bird et al. [12] found that 1.3% of the Apache HTTP Server

Developer mailing list contains malformed headers.

We need to filter emails on such lists, and consequently use

a custom best-effort parser adapted to handle these difficulties.

Since authors may submit their patches in many ways, finding

all patches cannot be guaranteed, though. Based on the

knowledge in the ground truth, the amount of patches that are

not captured is insignificant. Additionally, the revision control

system git that is widely used for Linux kernel development

provides tool support to prevents common mistakes in email-

based patch flows, which reduces the number of unparseable

emails. Following op. cit., we deem this threat minor.

VII. RELATED WORK II

Finding similar patches needs to be distinguished from

detecting similar code. Code clone detection (CCD) is a

well-researched topic mainly driven by revealing code plagia-

rism [16] or redundancy reduction [8]. The underlying problems

of detecting similar patches and detecting similar code are

related, but differ in one decisive property: code clone detection

analyses a certain snapshot of the code, while detecting

similar patches requires analysing a diff, which comprises

only fragments detached from the code base. Additionally, a

patch also contains an informal commit message that is not

considered by CCD.

Many CCD techniques use language-dependent lexical

analysis and analyse similarities of abstract syntax trees [27, 8].

Since patches only provide differences between syntactically

incomplete fragments of code, and may also modify non-code

artefacts, CCD techniques are typically inapplicable in our

scenario.

Another approach uses locality sensitive hash functions

for quantifying code similarity [27, 38]. Such hash functions

produce similar output for similar input. Arwin et al. proposed

a language independent approach [3] that analyses intermediate

code produced by the compiler. This is not applicable to our

problem since the aforementioned analysis of documentation,

scripts, build-system artefacts etc. needs to be independent of

any language restrictions.

Bacchelli et al. [5, 6, 7] link emails to source code artefacts in

a repository. In contrast to our work, they focus on discussions

and conversations instead of analysing mails with patches.

Naturally, informal conversations have a different structures

than patches. However, our approach of linking patches on

mailing lists to repositories allows us to transitively link follow-

up discussions of a patch, since the Message-ID of the initial

patch remains in the “reference header” of responses.

VIII. CONCLUSION & FUTURE WORK

The industrial deployment of OSS is often hindered by

required certification of their non-formal development processes

according to relevant standards, such as IEC 61508 [24] for

safety-critical industrial, or ISO 26262 [26] for safety-critical

automotive software. Even though the open and community-

driven development process of OSS provides full traceability

of its development, most of the information is not explicitly

contained in the repository, but implicitly hidden in semi-formal

discussions on mailing lists.

We presented a method that is able to reliably link emails

with patches to commits in repositories with high accuracy.

Additionally, we formalised the mathematical background of

the problem and identified it as a clustering problem. Based

on this, an elaborate evaluation built upon a solid ground truth

quantifies the high accuracy of our approach. The ground truth

and our framework can be used to evaluate the accuracy of

other approaches, and the fully published framework allows

for independent (industrial) evaluation required in certification

efforts.

The evaluation verified that the presented approach performs

better than existing work. For Linux and the LKML, we achieve

a 22% larger Fowlkes-Mallows index of 0.911 than the best

score achieved by the (previously best) plus-minus-line–based

approach.

From the technical and methodological side, future work will

focus on improving the performance of our approach by using

hybrid evaluation techniques. This is intended to combine the

performance of fast algorithms with lower accuracy with the

high accuracy of our computationally intensive approach.

Other upcoming work will focus on assessing of non-formal

OSS development processes. Our tool provides the basis for

such analyses, as it systematically makes the history of the

process accessible. Its accuracy makes it suitable for further

qualitative software analyses.
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