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Abstract—Industrial real-time appliances are often driven
by oversized general purpose commercial of the shelf (COTS)
hardware components. Cost pressure and minimality of the
system are only subordinate design factors. This suggests a
natural consolidation of multiple workloads, in particular work-
loads of mixed criticality, onto a single system. Safe isolation
is a quintessential requirement for this purpose, but isolation
guarantees have recently been endangered by a whole class of
attacks on speculative execution of CPUs, and will continue to
be threatend by similar imperfections.

Nevertheless, the availability of unused hardware resources
allows for shifting traditional isolation primitives from scheduled
tasks with OS-assisted, moderated abstract shared hardware
access towards unmoderated, independent computing domains
that run on strictly isolated hardware segments.

In this paper, we extend and refine well-known general require-
ments for virtual machines towards ideal hardware partitioning,
and establish necessary criteria for hardware and software to
achieve such a state. We discuss technical hardware issues that
currently prevent zero-trap designs in current real-world systems
of realistic complexity.

We discuss the implementation of a partitioning hypervisor
that supports three popular architectures with a focus on the
absence of hypervisor interaction. We show that the design pro-
tects against cross-domain side channel attacks, and inherently
maintains real-time capabilities on real-world hardware suitable
for use in industrial deployments.

I. INTRODUCTION

Industrial real-time control systems are often built by ex-
tending general purpose commercial off the shelf (COTS)
hardware components to reduce development effort in time
and cost by maximising the re-use of existing solutions. The
approach is commonly taken in many industrial domains, for
instance automation and control systems [19], civil infrastruc-
ture projects [12], medical appliances [20] or robotics [32].

The approach is beneficial if flexibility in system capabili-
ties is more important than potential reductions in cost that can
be achieved by mass-producing tailored devices that precisely
satisfy requirements, but usually never exceed them. Such
scenarios often appear, for instance, in the automotive industry,
but are rarely applicable to low-volume domains like medical
appliances, industrial control, or even home automation.

Currently, CPUs with multiple physical (and virtual) cores
are a de-facto standard in modern COTS hardware for non-
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microcontroller appliances, and their specifications and ca-
pabilities often considerably exceed the least demand for a
given set of requirements. Consequently, most systems provide
unused, excess hardware resources that can be used to integrate
tasks.

Systems of increasing complexity and software intensive-
ness need to deal with workload that contain tasks at different
levels of criticality; the resulting scenarios have received sub-
stantial attention during the last decade [4], and the conceptual
advantages and disadvantages of the many possible approaches
to build such systems are well researched.

One particular scientific focus of analysis for classically
tailored embedded systems is on schedulability, fault tolerance
or optimal work balancing to achieve deterministic and an
optimum utilisation of the hardware. Minimum system re-
quirements determine the most cost-effective choices for the
hardware. For high volume systems, it is not unusual that
special-purpose CPUs or SOCs are designed to satisfy very
specific use cases, which then necessitates intensive, software-
moderated sharing of resources. With few exceptions [9,
29], this resource management is typically implemented by
operating systems.

A strong industrial requirement for real-world systems is
that unwanted, unintentional interference between domains of
different criticality must be absent, and that this absence has
to be certified by either formal or informal criteria. The class
of recently discovered attacks on speculative execution [33,
28, 40, 42, 25, 22, 5] that have not only received substantial
academic consideration, but have even reached the attention of
the general public, highlights the risks of hardware resource
sharing, particularly when workloads of mixed criticality are
scheduled on the same physical execution units. All variants of
the above-mentioned speculative execution attacks are, roughly
speaking, side-channels on speculative execution of CPUs
sided by timing attacks on CPU caches [14, 43, 30]. They
open a covert channel that can be used to leak confidential data
between payloads of different criticality by the exploitation of
fundamental CPU primitives. This violates or subverts many
guarantees that are given by formerly trusted hardware units
on which architectures of mixed-criticality solutions usually
rely upon.

To mitigate the attacks, system software needs to imple-
ment computationally expensive countermeasures, assisted by
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Figure 1. Illustration of the influence of mitigations against speculation attacks
on determinism and response latencies of a Preempt-RT extended Linux based
system. Left side: without additional system load (besides real time tasks).
Right side: system is stressed by non real time load.

changes in CPU microcode. To quantify the cost, consider the
measurements in Figure 1 that compare time determinism of
a Linux kernel with Preempt-RT [24] real-time extensions as
measured by the standard cyclictest testbench [13] for a kernel
configuration with and without protection against Spectre and
Meltdown attacks. The approximate increase in maximum
(about 3 us) and average latency (about 5us) provides a natural
“cost budget” for the overhead inflicted by said protections
that can alternatively be invested into hypervisor respective
partitioning overhead (it is self-evident that a system operating
at maximal capacity will not be able to satisfy its original
constraints once such countermeasures wil be in place, which
gives additional justification to the use of over-provisioned
hardware).

We have already remarked that many real-world systems do
not operate at the brink of their capacity, and will retain the
ability to appropriately respond to events even in the presence
of Spectre-type mitigations. However, as we will discuss in
this paper, the partitioning of systems is an architecturally
more attractive alternative that can handle both, the inadvertent
establishing of covert side channels and the safe coexistence
of workloads of mixed criticality at the same time. This
benefits, for instance, existing certified industrial codes that
can only be modified at the expense of re-certification, which
is both substantial in terms of monetary investment and
required time to market: Instead of ensuring protection by
adding explicit countermeasures to the code, it is run inside a
isolated partition. Virtualisation technologies of modern CPUs
provide mechanisms for strict and full isolation of computing
domains [39, 17, 35, 41], and the overhead (usually caused
by lack of hardware capabilities and imperfections) imposed

by the cost of partitioning only marginally differs from the
cost of mitigations. Since partitioning provides additional
possibilities to system architects, we perceive the approach to
be a preferable solution as compared to only rectifying erratic
CPU behaviour.

An important industrial requirement on real-world that is
that it must be possible to guarantee (under a reasonable
definition of assurance) that partitioning implies freedom of
interference between the partitioned cells. Not only on par-
titioned, but also on conventionally scheduled systems, the
surface of potential cross-domain interference is determined
by the degree of interaction between different computing
domains. This includes interactions between tasks, tasks and
operating systems, or operating systems and an underlying
hypervisor.

We discuss (contributions to architecture, implementation,
measurement and verification of) a partitioning industrial
open source hypervisor, that allows us to build real-world
systems that offer effective interference guarantees derived
from hardware partitioning. Motivated by the reduction of
hypervisor interaction, low latency and minimal overhead, our
goal is to implement a zero-trap partitioning hypervisor. The
resulting system maintains real-time capabilities by design,
and completely eliminates OS/guest-hypervisor interactions.
Virtualisation technologies are used to statically and exclu-
sively assign hardware resources to computing domains to
achieve strict and safe isolation of computing domains.

While contemporary CPUs provide sophisticated virtualisa-
tion extensions, they still cannot provide suitable interfaces to
implement a trap-free approach. Consequently, we elaborate
on widely underestimated hardware requirements necessary
to implement hardware partitioning without hypervisor in-
terception. Our approach presents a solution to enable safe
coexistence of workloads of mixed criticality on a single
system for many general purpose use cases. Furthermore,
we explain how our architectural decisions reduce the attack
surface for cross-domain low-level hardware attacks such as
Spectre.

II. THE JAILHOUSE APPROACH

A common industrial requirement is to safely run real-time
workloads of mixed criticality on multicore systems [3] aside
Linux. Typically, more CPUs than different workloads are
available. Therefore, critical tasks can be exclusively assigned
to dedicated CPUs, and the availability of Linux (and its
feature-rich ecosystem) allows for running uncritical tasks on
the remaining CPUs.

One possibility to realize this conceptual design is to purely
rely on Linux-based isolation mechanisms. The SIL2Linux
approach uses the PreemptRT [24] kernel extension to add
real-time capabilities to the Linux kernel. It is combined with
static workload-based CPU affinities for pinning tasks to other-
wise isolated CPUs, control groups (cgroups) and and seccomp
for isolation, as well as bank aware memory allocation [44]
to reduce interferences from memory operations. The main
assumption of this approach is that the Linux kernel primitives



provide a sufficient level of isolation. Yet, all computing
domains share the same kernel: a critical system failure in any
computing domain of the system leads to an overall system
failure. Hence, parts of the system software (including the
kernel and parts of the userspace) must be qualified when the
system undergoes a formal certification. Given the large size
of all involved software components, we believe that this is a
challenging task.

Embedded virtualisation is an alternative approach. Do-
mains of mixed criticality run as guests of a hypervisor,
including Linux. This approach is, for example, implemented
by [8, 38, 18].

Static hardware partitioning is a special case of embedded
virtualisation that exclusively assigns hardware resources to
computing domains. It makes the assumption that available
resources are greater or equal than the required computational
power.

No scheduler (and hence, no scheduling overhead) activity
is required by the hypervisor, as computing domains are
statically assigned to CPUs. Nevertheless, operating systems
running as guests of the hypervisor may implement scheduling.
Virtualisation techniques ensure safe cross-domain isolation.
This approach is, for example, implemented by [23, 38].

Our approach is based on Jailhouse, a thin Linux-based
partitioning hypervisor that targets many real-world systems.
Motivated by the exokernel concept [11], our aim is to reduce
the hypervisor to a minimum level of abstraction. Our goal is
to minimise the hypervisor’s interaction with guests, with the
intention of preserving key quality parameters of any guest
software regardless of if it is executed natively, or under the
presence of a VMM.

A slim code base is a precondition for certifiability. The
reduction of guest interaction ensures the maintenance of the
platform’s real-time capabilities by design—if no interceptions
are present, no additional latencies can be introduced by the
hypervisor. Running Linux in uncritical partitions of the sys-
tem is a requirement for many real-world use cases. Therefore,
we partition a booted Linux system, instead of booting Linux
on a partitioned system (cf. Figure 2). This shifts any complex
hardware initialisation to Linux, and ensures a small code base
of the hypervisor as only a few platform specific drivers are
required (during the operational phase, Linux is lifted into the
state of a virtual machine).

Another advantage of the approach relates to running certi-
fied payloads: Many industrial codes are, for historical reasons,
designed to run on single-core systems, and would require
substantial porting efforts to leverage multi-core execution en-
vironments. Such changes would demand a re-certification of
the codes; likewise, a time- and cost-consuming re-certification
would be required if workloads are equipped with protection
against, for instance, Spectre-type CPU weaknesses. Executing
such legacy payloads in a partitioned cell has the advantage
that the code does not require protection against said CPU
weaknesses, because they are already implicitly required by
the partitioning hypervisor. When no code changes are neces-
sary, existing certifications can be retained, which is a clear

Figure 2. During the boot phase, Linux is booted on raw hard hardware.
Jailhouse is inserted in the partitioining phase and lifts Linux to the state
of a virtual machine. Configurations parameterise partitioning aspects of the
system. In the operational phase, secondary operating systems run aside Linux
on isolated hardware resources.

and substantial commercial advantage.
To create new isolated domains, specific hardware resources

(e.g., CPUs, memory, peripheral devices) are offlined removed
from Linux. The hypervisor is called to create a new domain
has raw access to these resources. Secondary real-time operat-
ing systems, including Linux, or even bare-metal applications
can be loaded to the domains. Jailhuse does not paravirtualise
any resources as it exclusively assigns resources to computing
domains.

The hypervisor shall ony be active during its boot phase
(the installation and initialisation of the hypervisor) and during
the partitioning phase (creation, initialisation and boot of new
domains). During the operational phase (system is partitioned,
and all partitions are running), there shall be no further
hypervisor interaction required.

III. REQUIREMENTS ON HARDWARE PARTITIONING

In 1974, Popek and Goldberg postulated Formal Require-
ments for Virtualizable Third Generation Architectures in
their seminal work [31]. They provide a fundamental formal
definition of Virtual Machine Monitors (VMMs), and give
requirements on their (efficient) implementation. Virtual ma-
chines have to satisfy three properties: equivalence, resource
control and efficiency.

Equivalence implies that any program must behave the
same, whether it is run on a virtual machine or on real
hardware – exceptions to this principle are permitted for timing
issues, and for the availability of physical resources. This is
obviously problematic for the application domains we con-
sider in this paper, in particular real-time critical workloads.
Resource control implies that the virtual machine monitor is
responsible for the allocation and moderation of hardware
resources. Efficiency implies that most instructions should be
natively executed without the need of hypervisor interception;
notably, the definition of “most” is left unspecified.

As the efficiency criteria would exclude, for instance, emu-
lated systems, Smith and Nair [37] confine VMM requirements
to the equivalence and resource control criterion. In addition,



they call VMMs that fulfil the efficiency requirement efficient
VMMs. Note that the efficiency criterion is satisfied if it only
holds for most instructions, as by the definition above, which,
in turn, necessarily implies that the criterion can only relate
to average case efficiency. Citing Popek and Goldberg [31]:
"Because of the occasional intervention of the control program,
certain instruction sequences in K may take longer to execute,
so assumptions about the length of time required for execution
might lead to incorrect results." Consequently, the definition
of efficient VMMs does not imply transitivity for timing- and
latency guarantees given by the hardware, as required by real-
time use cases.

A. Efficiency of VMMs

To provide a more quantitative version of the above ef-
ficiency requirements, consider a measurement M that is
performed on a program P that, in turn, defines an observ-
able property of the system (we will be using both terms
interchangeably). M is, in our case, restricted to measure a
temporal duration: The time value t0 records that starting
time of the measurement, and time t1 records when the
measurement is finished (the criterion for “finished” is given
by the arrival of some external event, or by a satisfied internal
logical condition). The value MP of the measurement is then
given by MP = ∆t = t1 − t0. An ideal system that is not
subjected to any other loads than the measurement proper,
repeated measurements deliver identical values for all runs:
M

(i)
P = m = const., where the superscript (i) indicates the

i-th measurement. The criterion does, of course, not hold for
systems that provide asynchronously triggered computational
services (for instance, performing interrupt service routines,
performing scheduling, . . . ) besides executing the subject
program P . Such activities effectively influence the measure-
ment in the form of noise, which we model by a stochastic
parameter b, drawn from some probability distribution that
must be provided depending in the actual circumstances. M b

P

represents a measurement subject to such noise.
Given a set of measurements M = {M b,(i)

P } of the observ-
able quantity P under noise b, we define that the observable
is transitive for operation op if op(MHW) = op(MVMM)
holds (MHW and MVMM denote that the measure is performed
without and under the influence of the VMM). If transitivity
for a given operation holds for all observables, we say that the
observable itself is transitive.

For a throughput-optimized system, “avg” is arguably the
operation of highest interest because the average-case perfor-
mance is crucial. For real-time systems, “max” is relevant
operation because worst-time behaviour is the essential char-
acteristic of such systems.

Trivially, transitivity for avg and max is guaranteed by ideal
VMMs that do not require any traps during the execution of
guests. We tighten the definition of efficient VMMs and call
a VMM an »ideal VMM«, if no traps are required during the
operational phase:

A VMM is ideal, if all instructions are natively
executed during the operational phase. Only mainte-

nance operations may be intervented by the hyper-
visor. Instructions that cause hypervisor intervention
are considered to be violations.

This means that cost of ideal VMMs only is limited to the
hardware costs of virtualisation [10].

While the definition of an ideal VMM is hard to satisfy
by hypervisors that premise on hardware resource sharing
and rely on software intensive hardware overcommitting (im-
plemented by, for instance, device emulation, paravirtuali-
sation [1] or domain scheduling), it is a realistic goal for
partitioned setups. For partitioned systems, we further define:

A partitioned system is ideal, if exclusive resource
access is granted by an ideal VMM.

Consequently, the ideal VMM criterion can only apply to a
subset of partitions of a partitioned system, for reasons that
we discuss in the next section. We call a partition that runs as
a guest of an ideal VMM an ideal partition.

While ideal partitions can already be achieved with modern
virtualisation extensions for constrained environments, com-
plex real-world scenarios still require occasional intervention.

B. Architectural System Limitations

Modern hypervisors usually try satisfy the efficiency crite-
rion by using various hardware based virtualisation extensions
provided by modern architectures (e.g., VT-x [39], VT-d [17],
SVM [35], VT [41], . . . ) that allow for executing most
instructions natively. MMU enhancements [39, 35]) of those
extensions (e.g., page-table virtualisation) assign host physical
memory to guests. Address translation of guest adresses to
host physical adresses is transparently performed by the MMU
and does not require any hypervisor interception—it will
only trap in case of access violation. Furthermore, those
extensions introduce an OS-superior privilege level in which
all hardware resources are accessible. The hypervisor may,
for instance, moderate access to shared resources, or directly
assign resources to guests.

Other hardware based extensions target the reduction of
interrupt overhead [17, 35, 16, 26]. Interrupt remapping al-
lows to directly route selected interrupts to virtual machines
without the need of hypervisor interception. Without interrupt
remapping support, interrupts trap the hypervisor, which will
dispatch the interrupt, and, if necessary, reinject it to guests.
If a device is directly assigned to a guest, or if a platform
specific interrupt (e.g., a platform timer interrupt) arrives at
the CPU interface, interrupt remapping will directly send the
interrupt to the virtual machine, if running. The aim of those
extensions is further reduction of VMM overhead.

Nevertheless, depending on their semantic, a hypervisor
may, for instance, be required to moderate the access to sensi-
tive system registers, such as model specific registers (MSRs)
or different control registers (CRs) on x86, or coprocessor
registers (CPs) on the ARM architecture.

The motivation of any of hardware based virtualisation
extension is to reduce the activity of the hypervisor by
trap reduction in order to increase the performance of the
system – frequently required policy decisions are offloaded to



hardware. Nevertheless, the development of those extensions is
often driven by throughput-oriented general purpose systems
(optimised on the average case): it is sufficient to offload most
decisions, while for real-time systems it is essential that all
decision can be offloaded to hardware.

During the development of a hypervisor that aims towards
zero traps, we elaborated concrete system requirements for
ideal partitioned systems. In the next section, we present
device specific and platform specific requirements for real-
world systems. For any requirement, we present examples that
violate the requirement, as well as potential software-based
workarounds. Such workarounds are, of course, contrary to the
envisioned concept, but required due to hardware limitations.

C. Device Specific Requirements

Peripheral devices (e.g., SPI, I2C, UART or ethernet con-
trollers) are essential components of any real-world setup,
but they are often ignored and underestimated during systems
development under laboratory conditions. Peripheral devices
are partitionable entities, if they can be spatially and logically
isolated.

Requirement 1: Logical Device Partitioning

The platform must provide means to transparently
assign device control to guests

In their simplest form, a device consists of control struc-
tures and a signalling interface. The platform must provide
means to assign those interfaces to guests without hypervisor
intervention.

On many architectures, device control structures are ac-
cessed through Memory-Mapped I/O (MMIO). The MMIO
address space of a device is backed by the device’s registers.
The typical page size of almost all modern architectures is
4 KiB or more, and represents the finest granularity of memory
that can be assigned by the MMU. Hence, devices need to be
spatially isolated by the granularity of the page size.

32 bits can be seen as the de-facto lowest limit of physical
address space of modern CPUs. While this provides enough
space to place different devices on separate pages, hardware
manufacturers often place multiple devices on one single page,
even different types of devices.

This becomes problematic for hardware partitioning, when
those devices need to be assigned to different domains, since
only pages can be assigned to guests without the need to trap
and dispatch memory access.

A software based workaround to overcome this issue is sub-
paging, a technique where the hypervisor allows for mapping
memory areas to guests that are smaller than the page size.
The hypervisor traps on any access and only forwards the
request if the guest has access permission. Any other access
is a violation. This leads to noticeable and undesired slow-
downs.

Spatial isolation can be solved by hardware manufactures
by assigning different devices to separate pages.

Furthermore, devices need a signalling interface, typically
implemented by interrupts. The platform must provide means
that interrupts may directly arrive at the guests without hyper-
visor intervention. This technique is called interrupt remapping
and is already supported by the virtualisation extensions of an
increasing amount of architectures [17, 16, 35, 26].

Requirement 2: Hierarchical Autonomy of Devices

Any device metafunctionality must be isolated from
other devices and must be logically partitionable

Metafunctions of devices (e.g., device power and reset
control, speed, baudrate) are often controlled by secondary
devices, such as clock or reset controllers. Such instances must
be partitionable on a device scope level. Any modification
within a device scope must not affect other devices.

On many ARM-based platforms, for example, the above-
mentioned clock and reset controllers are not partitionable
without hypervisor interception. They are a) located on single
memory pages, and b) control all peripheral devices of the
system. Complication this situation, they c) may also include
clock and reset lines, which are often implemented as complex
dependent hierarchical structures.

Currently, guest access to those functions is not possible
without complex hypervisor intervention. While guests should
be allowed to change device settings during runtime, one
workaround (without traps) is to statically set up the device
settings during the boot phase of the hypervisor and to forbid
any further modification. This can be inconvenient for some
scenarios. A complex alternative is to paravirtualise those
devices.

Nevertheless, the these issues must be addressed by hard-
ware manufacturers by designing device control instances in
a partitionable way: One possible implementation would be
to place all metafunctions of a device to a single page and to
reduce inter-device dependencies of hierarchically structured
clocks. This provides configurational flexibility, as the page
can simply be hidden if a guest shall not be permitted to acess
these functions. Another approach is to use system specific
registers in a standardised manner1 for device reconfiguration.
Whitemaps can be used to grant fine-grained permission to
functionalities.

However, during the implementation of our hypervisor, we
observed platforms2 where access to disabled devices stops
the whole platform. Hardware manufactures must ensure, that
erroneous device access from within a domain must not affect
the whole platform.

Logical isolation of a device is not limited to clock and reset
controllers. Any instance that interacts with a device (e.g.,
DMA controllers) must be designed in a partitionable way.
This means, usage, access or configuration of the instance must
not interfere with any other device or CPU.

1yet to be defined
2disclosure would identify authors



D. Platform Specific Requirements

Requirement 3: Platform Resource Partitioning

System platform resources must be partitionable with
respect to their domain affinity

A CPU interface must not be able to change the state of a
CPU of another computing domain. This includes, e.g., power
management such as sleep states or frequency scaling, memory
management or interrupt delivery. The platform must provide
CPU local control structures, or structures that are restrict to
the local computing domain.

Many traps on a platform result from the lack of (full) vir-
tualisability of platform specific resources. Access to sensitive
system registers, reconfiguration of CPU power management
settings or interactions with interrupt controllers are typical
causes for frequent traps that require hypervisor assisted
moderation. The hypervisor must ensure that any access must
not cause any unintended side effects to other domains. Simple
policy-based decisions can be resolved by hardware support.

On x86 platforms, for example, a hypervisor can condi-
tionally trap model specific register (MSR) access, based on
permission bitmaps. It allows either unmoderated access to
insensitive registers, to trap on reads, writes, or to trap on
both. depending on the semantics of the register. Platform re-
source partitioning requires that any interarction with machine
specific registers must not leak information of other domains,
or affect them.

The x2APIC implements interrupt controller virtualisation
support for Intel x86 platforms. It uses MSR-based register
access instead of conventional MMIO-based access. While in a
partitioned setup, a hypervisor may allow unmoderated access
to insensitive registers, access to sensitive registers, such as
the interrupt command register (ICR) must be intercepted. The
ICR is used to send inter-processor interrupts (IPIs) to other
CPU interfaces. Hence, raw write access must be forbidden, as
CPU interfaces of other domains can be adressed. Access must
be intercepted by the hypervisor, which will check permissions
and forward the request. Other architectures like ARM [27,
26] have similar interfaces that require moderation by the
hypervisor.

Interception of platform devices can generally be avoided, if
CPU local interfaces could be parameterised by the hypervisor
with the scope of the domain. Similar fine-grained conditional
register trap that is, for exapmle, based on bitmasks, is possible
and already supported for various other CPU control registers
(CR) on x86 [39].

Requirement 4: Cross Core Independence

The microarchitectural state of a core must not be
affected by neighboured cores

Many publications and successful attacks on microarchi-
tectural and speculative attacks underline the risks of shared
hardware resources [22, 40, 42, 33, 28, 25]. For real-time

performance reasons, and for security reasons [40, 42, 33],
parts of the execution unit must not be shared. Symmetric
Multithreading, for example, violates cross core independence.

Besides SMT, many microarchitectures implement further
carriers of potential coverage channels: caches. Last level
cache (LLC) is often shared across different physical CPUs.
Depending on the architecture’s cache organisation, this can
result in sharing of the LLC across different domains. Sharing
caches can lead to performance and security issues and should
be considered dangerous due to following reasons.

1. On many Intel CPUs, the LLC is an inclusive cache. This
means, the LLC includes all data from lower cache levels.
Consequently, the eviction of an entry in the LLC causes the
eviction of the entry in all lower levels. Aimed memory traffic
generated by a CPU can cause consequent overwrites of the
whole shared LLC. As the LLC is inclusive, it will invalidate
everything in the L1 cache of all other CPUs [15]. With this, a
CPU can cause cache misses of another CPU that is assigned to
a different domain. This causes unintended and unacceptable
slow downs.

2. Furthermore, (shared) caches are a common target for
many microarchitectural attacks [33, 43, 42, 14]. Yarom et
al. have shown that their FLUSH+RELOAD side channel
attack can be used to reconstruct the control flow of pro-
grams, if two independent processes share the same pages
(e.g., shared libraries). In their paper [43], they conclude to
cryptographic secrets by the analysation of the control flow.
The FLUSH+RELOAD pattern is the foundation of many
further microarchitectural attacks [42, 22, 33]. Shared caches
increase the attack surface.

In partitioned setups, there is no sharing of common phys-
ical pages across cores. Therefore, partitioned systems do not
benefit from shared caches. This protects them against attacks
mentioned in 2), but still exposes them to threats mention in
1).

To overcome the scenario explained in 1.), Intel implements
the Cache Allocation Technology (CAT) [15] as part of their
Resource Director Technology (RDT) [7]. CAT allows to
partition the LLC by the exclusive assignment of dedicated
cache portions to cores. Nevertheles, we believe that their
implementation should be considered inconsistent: While a
core may only allocate and evict cache lines only within its
scope, "a read or write from a core may still result in a
cache hit if the cache line exists anywhere in the LLC." [15]
This, in turn, opens a new potential3 attack vector for side
channel attacks: an attacker can FLUSH+RELOAD a cache
line. The data is in user by neighboured cores, if the access
time measurement confirms L3 presence right after the flush.

There are too many indicators that shared caches misbehave
in certain situations, yet there are no benefits in partitioned
scenarios. Platform should either not support shared caches,
or implement cache partitioning in an consequent nonreactive
manner.

3unaudited



Shared system resources and traces in the microarchitectural
state of a CPU endanger many modern computing systems. It
requires careful analysation if and to what degree partitioned
systems might be affected.

IV. CROSS-DOMAIN PROTECTION AGAINST SPECULATIVE
EXECUTION EXPLOITS

Performance, throughput and efficiency of almost all mod-
ern CPUs rely on aggressive microarchitectural optimisations.
Pipelining, speculative execution and out-of-order execution
are prominent and effective optimisation techniques.

Out-of-order execution allows single CPUs to efficently re-
order instructions in order to achieve an optimal utilisation of
the CPU pipeline. CPU pipelines allow parallel execution of
different stages of multiple independant instructions. Branch
prediction is a speculative execution technique, to achieve
optimal utilisation of the CPU pipeline. A CPU that imple-
ments branch prediction speculatively executes instructions in
advance of conditional branches with yet unknown results. It
may execute instructions that may not be needed or that are
not allowed. High utilisation of all execution units in parallel
is one of the elementary reasons of the high performance of
modern CPUs.

Naturally, speculative execution inherently leads to erro-
neous decisions. Thus, executed mispredictions are transparent
to users as they are rolled back in order to preserve an
accurate external state. However, they leave microarhitectural
traces in the internal state of the CPU that open potential
covert channels. Misdirection in combination with internal
state analysis allow an attacker conclude the external state of
the CPU. In 1995, Sibert et al. indicate the existence of such
microarchitectural state dependant covert channels [36].

Two decades later, in the beginning of 2018, independant
researchers present a whole new class of microarchitectural
attacks: the family of Spectre attacks. Since then, many
researchers found new methods or variations of attacks on
speculative execution of CPUs.

All Spectre attacks and their variations violate fundamental
guarantees on the confidentiality of data that is given by
(core-local) protection mechanisms of a CPU. Software based
solutions in operating systems and system firmware, as well as
processor microcode updates are required to mitigate attacks.
Many of those numerous mitigations are cost-intensive.

A. Overview: Attacks and their Mitigation

a) Spectre: One pattern of Spectre attacks is to mislead
execution units to perform dependant loads. Transient execu-
tion attacks [22] try to speculatively load memory where the
address depends on the offset of a secret (dependent loads).
This intentional misguidance leads to mistaken speculative
execution and the external state is rolled back. While this pre-
serves external consistency, attackers can draw conclusions on
the secret by analyzing the internal state that was modified by
the execution of transient instructions. Many attacks analyse
the state of caches to leak informations on the internal state:
evaluation of memory access time (e.g., FLUSH+RELOAD

attacks [43]) to adjacent memory cells can be used test if data
is present in caches. A valid cache line can be loaded through a
transient execution. The number of the warm cache line carries
the original secret.

Those attacks are mitigated by CPU microcode and sys-
tem firmware updates that introduce speculation barriers, by
compiler-assisted convertion of indirect branches to return
statements, and by OS-based protection against speculation
on user-controlled data in kernel space and others.

b) Meltdown: A similar attack is Meltdown [25] (aka.
Spectre v3 or Rogue Data Cache Load). It exploits out-of-order
execution to bypass illegal memory access to areas protected
by memory management units (MMUs) on many Intel and
ARM processors. While access to protected memory will cause
an exception, out-of-order execution bypasses MMU-based
protection mechanisms. Again, the secret can indirectly be
used to warm up a cache line that remains as an artefact of
the internal microarchitecutral state. Meltdown is able to leak
data from present, but protected privileged pages (e.g., data
from kernel space).

For performance reason, many operating systems share the
same page table for user and kernel space. Kernel space pages
are marked as privileged and not accessible from user space.
This saves cost-intensive page table switches on privilege level
switches. Meltdown overcomes this security barrier. Hence, it
is mitigated by the isolation of user and kernel pages: Page
Table Isolation (PTI). When software runs in user space, only
a small priviliged trampoline pages is mapped that hands over
to kernel space pages. This requires page table switches on
every privilege level switch.

c) Foreshadow / L1TF: Foreshadow [40] and
Foreshadow-NG [42] are attacks on SGX (secure enclaves)
and MMUs of modern Intel CPUs. Foreshadow allows
to read secret data from SGX enclaves, and Foreshadow-
NG (also known as L1TF or Level 1 Terminal Fault)
allows to read any data from the core-local level 1 cache.
Foreshadow-NG exploits additional design flaws of MMUs:
Intel MMUs speculatively use physical addresses of invalid
page table entries (i.e., entries with cleared ’present’-bit).
Intel is hypothesised to "implement L1 tag comparison in
parallel with the adress translation process for performance
reasons" [42]. While access to invalid page table entries raises
an exception (i.e., Terminal Fault), the data of the L1 cache
is already used for transient out-of-order execution of the
following instructions. Analogously to other microarchitecural
attacks, change of the internal microarchitectural state is used
to leak secrets. L1TF is able to leak any data that is present
in the core-local L1 Cache.

User-space processes may speculate on previously available
pages that are not present (e.g., swapped pages). Operating
systems running as virtual machines are able to a) leak data
from the hypervisor and b) leak data from other virtual
machines that are scheduled on the same core and leave
data traces in the L1 cache. Secrets can also leak through
neighboured simultaneous multithreading (SMT) siblings as
they share the L1 cache.



To mitigate L1TF, operating systems implement page table
entry (PTE) inversion and conditional cache flushes. PTE
inversion applies a bitmask to the physical address of un-
present pages in order to point to invalid physical addresses.
This protects operating systems from users that speculate
on unpresent pages. To protect hypervisors against malicious
virtual machines, and to protect virtual machines against each
other, operating systems implement (expensive) conditional L1
cache flushes on privilege level switches. A full prevention of
cross-VM exploits requires to disable SMT.

d) Microarchitectural Data Sampling: RIDL (Rogue In-
Flight Data Load) and Fallout present microarchitectural data
sampling (MDS) attacks that target CPU-internal buffers (e.g.,
Store Buffer, Fill-Buffer or Load-Port) of Intel CPUs. During
its execution, a victim process utilises CPU internal buffers
with private data. Later, the scheduler of the operating system
replaces the victim process with the attacking process. "When
the attacker also performs a load, the processors speculatively
uses in-flight data from the Line Fill Buffers (LFBs) (with
no addressing restrictions) rather than valid data" [33]. Covert
channels, e.g. the FLUSH+RELOAD attack, finally reveal the
secret of the victim process.

Recent Intel CPU microcode versions patch instructions to
perform flushes of various exploitable internal CPU buffers.
For virtualised environments, an alternative, yet more cost-
intensive mitigation are L1D cache flushes. Nevertheless, this
is the prefered mitigation for systems that are vulnerable to
L1TF, as they need to conditionally flush L1 caches on the
same paths in either case. "The mitigation is invoked on
kernel/userspace, hypervisor/guest and C-state (idle) transi-
tions." [6]

While store buffers are partitioned across SMT threads,
entering or leaving sleep states repartitions the buffers and
data can be exposed between SMT threads. Depending on the
workload, full mitigation requires SMT to be disabled as fill
buffers are shared between SMT threads. [21]

B. Jailhouse and Speculative Execution Attacks

All known speculative execution attacks exploit CPU-local
interfaces. At the moment of writing, there are no known
speculative execution attacks across physical CPU boundaries.
To attack the victim, it needs to temporarily share the same
core with the attacker. Naturally, CPUs can not leak data they
do not know or data they can not see.

To isolate domains of different criticality, Jailhouse ex-
clusively and statically assigns CPUs to its guests, i.e., to
different execution domains. By design, Jailhouse does not
schedule domains. It has no means built in to share a logical
CPU between multiple guests. This differentiates Jailhouse
significantly from the hypervisors that run, e.g., in cloud
environments.

This fundamental architectural decision provides a strong
cross-domain protection layer against speculative execution
attacks. Nevertheless, the following scenarios have to be
carefully assessed: a) Inter-Guest attacks, and b) Attacks on
the hypervisor.

a) Inter-Guest Attacks: While Jailhouse does not sched-
ule guests, a guest (e.g., an operating system) may schedule
different processes. Hence, malicious code can be used to leak
secret information of other processes of the same execution
domain.

Nevertheless, if a domain needs protect itself against attacks
from within the domain, the operating system may implement
countermeasures. On the ARM64 architecture, speculation
barriers are implemented by the secure monitor running in
exception level 3 (the hypervisor runs in the lesser privileged
exception level 2). Calls from exception level 1 (OS / kernel)
of a guest to exception level 3 require interception and
moderation by the hypervisor. On affected ARM64 systems
that implement secure monitor-based speculation barriers, Jail-
house calls anti speculation barriers on every trap.

It is the decision of the guest whether further mitigations
are required.

b) Hypervisor Attacks: One design goal of Jailhouse is to
setup hardware partitioning, which, ideally, requires no further
hypervisor interception for regular operation. Conceptually, the
hypervisor should only be active during its boot and partition-
ing phase, and only handle unrecoverable critical exceptions
during its operational phase. The architecture provides strong
protection of the hypervisor: speculative execution attacks
can only work in cases, where the victim executes code and
operates on secrets.

The zero-trap goal is already achieved for some use cases on
Intel x86 systems, it is generally limited by current hardware
support. These limitations were presented in Section III.
Generally, all speculative execution attacks require victim code
to run.

Nevertheless, in order to implement Jailhouse on common
architectures the hypervisor needs to intercept or moderate
certain situations, that depend on the target architecture’s
virtualisation capabilities. Furthermore, Jailhouse implements
a slim hypercall interface for management tasks. This involves
hypervisor activity that can potentially be used in speculative
execution attacks.

A CPU can only leak what it can see. In case of Jailhouse,
this is includes its binary code, configuration, and sensitive
guest state information. System configuration contains parti-
tion information and information on the platform’s topology.
This does not contain secret data that needs protection. As the
hypervisor is developed as an Open Source project, hypervisor
binary code does not need protection.

Malicious guests may use or even synchronously control
hypervisor activity to prepare for speculative execution attacks.
By design, Jailhouse only exposes a minimum attack surface
to guests as it only maps a small subset of guest pages into its
address space that is required to perform its duties. Jailhouse
maintains isolated core-local address spaces and does and does
not share CPU private pages across CPUs. Core-local CPU
state is not visible to other CPUs. Only a small set of uncritical
management information (e.g., the hypervisor state) is shared
across all CPUs. Because of its simplicity, address space
isolation was implemented with reasonable effort. Currently,



Linux’s KVM ungergoes efforts of implementing a similar
isolation strategy4.

c) Attacks on SMT: Simultaneous multithreading is a
further technique to optimally utilise available hardware re-
sources. SMT transparently exposes multiple logical CPU
interfaces to users, while parts of the underlying physical units
are still shared (e.g., L1 caches). Execution units can be shared
or duplicated between logical threads.

Sharing of execution units may lead to mutual contention
between different threads. While SMT increases overall per-
formance and throughput of a system, contention causes
unintended latencies, which have negative impact on the real-
time behaviour of systems. Hence, we share the opinion of [24]
to disable SMT in any case, in order to maintain real-time
capabilities.

However, if SMT remains active, logical threads are vul-
nerable to attacks that exploit shared execution units or shared
chaches. Hence, we recommend to allocate threads of physical
CPUs to the same execution domain. It is the decision of the
guest if further OS-based mitigations are required.

In any case, in the Jailhouse architecture, all secret in-
formation remain in guests on isolated CPUs. Under ideal
conditions, no secrets remain in the hypervisor.

V. DISCUSSION & RELATED WORK

The requirements of Popek and Goldberg were postulated in
1974, but are—almost half a century later— still applicable to
modern systems. However, some adaptions and extensions are
required to handle contemporary real-world use cases that need
to satisfy real-time and mixed criticality requirements. with
slight adaptions. We have presented some general, high-level
criteria, and have also derived consequences for hypervisor
assisted static hardware partitioning.

Many of the existing hardware virtualisation extensions
reduce hypervisor interaction to optimise the average-case
behaviour (throughput) of systems. As real-time systems are
optimised for the worst-case, these extensions do not always
necessarily meet real-time requirements in terms of low la-
tency as avoidable hypervisor interception is required in many
cases.

For statical hardware partitioning, any remaining intercep-
tion causes are mainly solved by software by policy-based
decisions that can fully be offloaded to hardware. Hard-
ware/Software codesign can close the missing gap: software
requirements on the system need to be carefully evaluated with
systems designers.

The disclosure of Spectre and related attacks target the
complexity of modern systems, and require, depending on
the workload, expensive mitigation measures. Many of these
attacks exploit sharing of resources: hardware units can be
shared across multiple tasks. This includes, for example,
physical CPUs, if different workloads are scheduled on the
same execution unit, and caches, if different workloads on
different execution units share the same caches.

4cf. https://lkml.kernel.org/lkml/20190514070941.GE2589@hirez.
programming.kicks-ass.net/T/

With the existence of multi-core SMP CPUs, software-based
sharing techniques, such as domain scheduling, can be avoided
for many use cases. From a real-time perspecitve, this lowers
system overhead and on the other hand, it avoids sharing of
hardware resources and reduces the attack surface for attacks
based on speculative execution.

Barrelfish [34] is an operating systems that is designed
for heterogeneous multi- and many core systems. They focus
on operating system scaleability aspects, as, for example, the
number of CPUs on a system grows more than indivudual
clock rates. They argue that multi-core systems can be seen as
a network of independent cores, and that no sharing at lowest
level is required [2].

Other researchers analyse operating system overhead and try
to offload, for example, scheduling decisions to hardware [9].
Micokernel approaches follow similar goals: a significant
fraction of decision should be offloaded to hardware.

VI. CONCLUSION

We presented the concepts of Jailhouse, a real-world Linux-
based static partitioning hypervisor. For many real-world use
cases that require Linux to run side by side with real time
operating systems, we discussed that hardware partitioning is
a viable alternative to classical OS-based isolation approaches,
especially when legacy workloads must be protected against
hardware weaknesses like Spectre-class speculation attacks
without modifying certified components.

We defined the concepts of ideal VMMs, ideal partitions
and ideal partitioned systems with the goal of establishing
zero-trap hypervisors on real-world systems that only need to
account for setting up partitions, but do not interact with the
content of any partitions in the operational phase. Experiments
with an implementation of the concept on multiple hardware
platforms showed limitations inherent in current hardware.
We discussed necessary improvements in future virtualisation
techniques to facilitate a realisation of our approach on real-
istic systems.
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