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Abstract—Software development projects leave a large 
amount of data in repositories of Application Lifecycle Manage-
ment (ALM) tools. These data contain detailed histories of their 
respective projects, their results and decisions made along the 
way. Analysis of such data helps uncover various interesting facts 
about projects, e.g. their socio-technical structures and the actual 
(vs. purported) roles of team members. Based on experiences 
with tools supporting our research we are convinced that it is 
feasible to consolidate data from different ALM tools, tapping 
into the situation common in real-life projects. In this paper we 
report on our work towards a shared common data model and 
tool integration aimed at improved project analysis. We discuss 
how this can help in the identification of architects in the project 
organizational structures, their activity patterns and collabora-
tion with other team roles.  

Keywords—empirical software engineering; project patterns; 
ALM data; software architect; activity analysis 

I. INTRODUCTION 
Empirical software engineering is based on data on tech-

nical, process and societal structures of actual projects. While 
in-depth analyses of such data (see, e.g., [1]) often discover 
valuable and unexpected facts, the analysis is often hindered by 
the fact that different projects (even in the same company or 
open source community) use different Application Lifecycle 
Management (ALM) tools. Obtaining coherent data is often a 
difficult process performed by researchers with the help of ad-
hoc tools. Existing interoperability standards such as XMI or 
OSLC1 are insufficient and therefore inapplicable to such re-
search efforts. 

The analysis of software projects using ALM data is a 
common interest of both author research teams (UWB Pilsen, 
OTH Regensburg). In this paper, we describe a common data 
model that consistently captures the content of various ALM 
tools. We then describe the two tools currently under develop-
ment at OTH and UWB respectively, Codeface and SPADe 
(Software Process Anti-patterns Detector). The common model 
implementation is used to obtain and share data from several 
version control and issue-tracking systems between the tools, 

                                                           
1 Open Services for Lifecycle Collaboration, https://open-
services.net/ 

and lead to enriched information for analyses done by both 
research groups. Finally, we discuss the practical integration of 
the tools resulting from a joint work by the authors of this pa-
per, and its benefits. 

Our work differs from the contributions of Draheim and 
Pekacki [2] in using both Version Control Systems (VCS)  and 
issue-tracking tools, and from German [3] and Grambow, 
Oberhauser and Reichert [4] by being non-specific to one set of 
tools. Its results could be utilized by other researchers, for ex-
ample for personal workflow modifications [5][6].   

II. ALM DATA AND COMMON MODEL 
Any quantitative analysis of software development projects 

requires accurate data that describes the various aspects of their 
history and product construction.  Because any larger software 
development project needs appropriate tool support to track 
status, activities and artefacts created by project members, data 
from these tools are ideally suited to perform such analyses. 
ALM tools, which integrate VCS and issue-tracking tools, are a 
commonly used family of tools and (if used properly) offer an 
objective and detailed history of collaboration patterns and 
activities of individual team members.  

Different tools vary strongly in their data models, the avail-
ability of analytical and statistical modules, or the granularity 
of data stored (e.g., rigorous RTC2 vs. lightweight GitHub3). 
However, there is a common underlying set of entities that all 
ALM tools use, and that data structures can thus be mapped be 
mapped to these entities. In previous work by some of the au-
thors [7], we have devised such a common data model (Fig. 1) 
by studying the data structures of several ALM tools. It can 
reflect major software development process methodologies 
(among others, see [8] for details, ISO 24744 and SPEM – the 
Software and Systems Process Engineering Meta-Model), ena-
bling process-centric analysis. 

Since not all ALM tools store the project data at the same 
level of detail, some meta-model entities need to be analytical-
ly inferred. In Fig. 1, the black entities can be (more-or-less 
directly) obtained from ALM data – among them are names 

                                                           
2 http://www-03.ibm.com/software/products/en/rtc 
3 https://github.com/ 
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and email addresses of project contributors (identities), their 
roles and associated work units (tasks). Blue entities need some 
analysis or user input (e.g., if there is only one mechanism in 
the tool to capture project segments, i.e. coherent parts of the 
project’s timeline depending on a specific methodology used, 
we need to decide whether they are iterations or phases). The 
red entities present deeper specific challenges, for instance 
determining activities (sets of related tasks, e.g., performing 
product release) or personal competencies.  

Even the analysis of the basic SPADe entities like work 
units (issues or tickets) and configurations (commits or revi-
sions) can yield interesting and useful results. For example, 
only work units and configurations data are needed for check-
ing over- and underestimation patterns or the practice of link-
ing commits to issues, which many projects regard as good 
software engineering practice. 

The metamodel is specifically constructed to allow for de-
tecting defined best or bad practices (patterns and anti-patterns, 
smells) and deviations, and enables similar analysis with re-
spect to social cooperation issues. 

III. CODEFACE 
The study of socio-technical patterns in software develop-

ment through ALM data analyses can be approached in two 

ways. One is to focus on a specific tool and phenomenon first 
and widen the scope over time (bottom-up). Another starts with 
a general approach and implements it for specific tools (top-
down). The former approach was adopted by the co-authors of 
this paper from the Laboratory for Digitalisation (LfD) at the 
Technical University of Applied Sciences (OTH) Regensburg 
in Germany. 

We focus on the study of collaboration among developers 
in open source projects through social collaboration networks 
and their evolution over time; the tool supports various notions 
of “collaboration” like joint work in functions, commit review, 
and others. The goal of our research is to study the link be-
tween collaboration structures and product quality. We used 
Git VCS data and mailing lists as the primary sources of data. 
Weighted graphs describe, for instance, the relationship be-
tween core and peripheral developers and the turnover between 
these roles throughout the lifecycle of a project, as well as oth-
er aspects of open source development [1][9][10]. Fig. 2 shows 
illustrative examples for different collaboration structures with 
developers as nodes and identified collaborative relationships 
as edges. 

The experimental tool supporting our analyses is called 
Codeface and is provided as Open Source Software (OSS). Its 
source code and documentation can be found on the supple-

 

Fig. 1. SPADe domain metamodel. 
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mentary web page4.  Though not yet specifically aimed at ar-
chitects, once this role is identified in the collaboration graph, 
Codeface can provide comprehensive data on the measure of 
their collaboration with other team members and their temporal 
changes. However, current underlying data do not include the 
roles of the individuals. 

The “Patch Stack Analysis” (PaStA) toolkit is another tool 
developed at LfD, used to understand socio-technical patterns. 
It also analyzes Git repositories and mailing lists, and focuses 
on the study of patch stacks (feature-granular modifications of 
mainline releases in parallel development). Namely it can iden-
tify patches moved from one stack to another, forward- and 
backports and invariants, and the time it took a particular patch 
to make it from a patch stack to mainline development [11]. 
Fig. 3 shows sample results of the analysis. 

The next step in PaStA related research aims at the classifi-
cation of patches by purpose (e.g. corrective, feature, etc.) to 
estimate their development cost and reuse potential, and to 
understand the implications of patches on software mainte-
nance.  The data, however, can be filtered to focus on the rela-
tionship between activity of a given team member and its ef-
fects on maintenance cost. Therefore, if the knowledge on the 
identity of an architect and the developers he/she collaborates 
with can be provided, the general process can be applied to 
data specifically tied to his/her activities in the project. 

IV. SPADE 
A complementary (top-down) approach to ALM tool data 

analyses is pursued by the paper co-authors at the Department 
of Computer Science and Engineering (DCSE) at the Universi-

                                                           
4 https://github.com/siemens/codeface 

ty of West Bohemia (UWB). It is based on the idea of perform-
ing process pattern analysis on ALM data converted and stored 
in a unifying metamodel [8], see also Fig. 1. The primary pur-
pose is detecting well known and/or user defined bad practices 
(anti-patterns) in software development, and evaluating how a 
project follows defined process practices. 

From the perspective of studying architects’ behavior in a 
given project, SPADe can serve multiple purposes. First it can 
analyze all available project data and assign the role of an ar-
chitect to specific team member(s) based on that analysis, if the 
ALM tools used do not assign the role themselves. Second, it 
can store and aggregate data on architects’ activities throughout 
the project from all the ALM tools used. 

Finally, SPADe is designed to store and analyze issue 
(work unit) histories. Therefore, by analyzing changes in the 
assignee attribute of a work unit, comment content (stored as a 
description attribute of change entity) and authors, as well as 
issue relations, it can identify activities where an architect is 
involved, such as code reviews or architecture-induced refac-
toring request. This includes cases when the task is primarily 
assigned to someone else, or when the activity does not leave a 
mark in VCS or mailing list data. 

V. APPROACHES AND TOOLS INTEGRATION 
Collaboration between the two research teams (OTH and 

UWB) entailed assessing the feasibility and mutual benefits of 
combining our research efforts. Due to the opposing strategies 
adopted by the two research tool sets (bottom-up for Codeface 
and PaStA, top-down for SPADe), neither of them was on its 
own able to fully grasp the complex project structures – includ-
ing the specific issues surrounding the involvement of team 
roles such as architects. Therefore it proved desirable to en-
hance each of the tool sets with the current results of the other 
one. 

On the database layer, a full integration was not yet desira-
ble because of proprietary aspects of the respective databases 
that are not useful to the other party. The data models were 
however modified by drawing inspiration from one another. 
SPADe contributed to Codeface its common entities for data 
that are not tool-specific, in particular its section for issue-
tracking data has been modified to use the work unit and 
change entities, relations between change and field change (an 
entity not visible in the domain model in Fig. 1), and between 
work unit and configuration (issue and commit). The attributes 
of a Codeface entity issue, previously heavily Bugzilla specif-
ic, were also changed to those of the SPADe work unit (a cor-
responding entity). This way, the Codeface model acquired the 
ability to capture the commit-issue relation. 

Analysis of Codeface data model and algorithms clarified 
some of the more subtle details and challenges of mining Git 
repositories and mailing list archives. During these efforts it 
was found, that the respective data models were similar in im-
portant aspects, which at the same time simplified their modifi-
cations and informally validated the correctness of the SPADe 
metamodel. 

Because both approaches use different technologies for 
their implementations (Codeface and PaStA are mainly based 

 

Fig. 2. Examples of colaboration network graphs obtained with Codeface. 
Nodes represent developers (size is proportional to their centrality) , and 
edges describe a collaboration relationship (e.g., joint work on a change). 

 

Fig. 3. PaStA identification of patch stacks (colored dots), back-
/forwardports and invariant patches (indicated by the directed edges). 
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on Python and R, while SPADe utilizes Java) a straightforward 
full integration into a single toolset is currently not feasible, 
nor is it deemed necessary. 

VI. BENEFITS 
The enhancement of the Codeface and PaStA data models 

by SPADe common entities, which is already finished, allows 
us to capture ALM data from various tools and enhance our 
analyses with proper issue-tracking data for more complete and 
accurate results. The commit-issue relation will provide an 
opportunity for a more detailed and accurate determination of 
collaboration graphs and developer social networks. 

One such case is the ability to study whether architectural 
activities have impact on product quality – for instance, the 
involvement of software architects in tasks and commits relat-
ed to code refactoring or API development. Another research 
question enabled by the integration is to find out where archi-
tects are in reality positioned in the project collaboration struc-
ture – their prevailing communication with contributors in “de-
veloper” roles, can, for instance, signal a different methodolo-
gy than closer links to contributors in project management 
roles. 

Furthermore, Codeface will significantly benefit from the 
use of the data-mining ability of SPADe and its data pumps to 
collect data from multiple sources. SPADe data will also be 
used to include issue-tracking information into the PaStA patch 
classification, which will be useful in analyzing, for instance, 
maintenance activities. These can in turn be used to assess 
whether architect involvement has impact on the project. 

The SPADe meta-model has been influenced in structurally 
minor, but nonetheless important ways by the Codeface data 
model mainly in the area of VCS and mailing list data. On the 
level of analysis, the approach to recognizing multiple identi-
ties (aliases, user names, email addresses, etc.) belonging to the 
same person has been adopted from Codeface to SPADe. This 
contribution will enhance the quality of SPADe-managed data, 
and will allow us to better identify potential architects. The 
PaStA classification of patches will provide a basis for deter-
mining change (work unit) classes in SPADe, which in turn 
will allow for better detection of architects’ involvement in 
tasks of other members. Finally, SPADe will use the results 
provided by Codeface and PaStA as indicators for specific anti-
patterns both in- and outside the scope of architects’ activities. 

VII. CONCLUSION 
We have demonstrated the feasibility of defining a common 

data model for data from various ALM tools and its use for 
analyses of socio-technical patterns in software development 
projects, which is an important part of our research. The use of 
this common model in the integration of our teams’ research 
tools, which we have practically validated and found mutually 
beneficial, will enhance their analytical capabilities. We have 
discussed that one of the possible enhanced uses is the evalua-
tion of architects’ behavior in software development and the 
impact of the role on different aspects of projects. 

Our current focus is to concentrate on using open source 
projects as sources of experimental data, due to their straight-
forward availability, and to grow our dataset extensively both 
by mining new projects and accessing new sources (so far un-
tapped ALM tools).  It is our expectation that the resulting da-
taset based on multiple sources and a common metamodel can 
become a valuable resource for independent research on soft-
ware projects and their socio-technical patterns. 
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