
Towards Architect’s Activity Detection Through a
Common Model for Project Pattern Analysis

Petr Pícha, Premek Brada
Department of Computer Science and Engineering & New
Technologies for the Information Society Research Center
Faculty of Applied Sciences, University of West Bohemia

Pilsen, Czech Republic
{ppicha, brada}@kiv.zcu.cz

Ralf Ramsauer1, Wolfgang Mauerer1, 2
1Laboratory for Digitalisation, OTH Regensburg

2Siemens AG Munich
Germany

{ralf.ramsauer, wolfgang.mauerer}@oth-regensburg.de

Abstract—Software development projects leave a large
amount of data in repositories of Application Lifecycle Manage-
ment (ALM) tools. These data contain detailed histories of their
respective projects, their results and decisions made along the
way. Analysis of such data helps uncover various interesting facts
about projects, e.g. their socio-technical structures and the actual
(vs. purported) roles of team members. Based on experiences
with tools supporting our research we are convinced that it is
feasible to consolidate data from different ALM tools, tapping
into the situation common in real-life projects. In this paper we
report on our work towards a shared common data model and
tool integration aimed at improved project analysis. We discuss
how this can help in the identification of architects in the project
organizational structures, their activity patterns and collabora-
tion with other team roles.

Keywords—empirical software engineering; project patterns;
ALM data; software architect; activity analysis

I. INTRODUCTION
Empirical software engineering is based on data on tech-

nical, process and societal structures of actual projects. While
in-depth analyses of such data (see, e.g., [1]) often discover
valuable and unexpected facts, the analysis is often hindered by
the fact that different projects (even in the same company or
open source community) use different Application Lifecycle
Management (ALM) tools. Obtaining coherent data is often a
difficult process performed by researchers with the help of ad-
hoc tools. Existing interoperability standards such as XMI or
OSLC1 are insufficient and therefore inapplicable to such re-
search efforts.

The analysis of software projects using ALM data is a
common interest of both author research teams (UWB Pilsen,
OTH Regensburg). In this paper, we describe a common data
model that consistently captures the content of various ALM
tools. We then describe the two tools currently under develop-
ment at OTH and UWB respectively, Codeface and SPADe
(Software Process Anti-patterns Detector). The common model
implementation is used to obtain and share data from several
version control and issue-tracking systems between the tools,

1 Open Services for Lifecycle Collaboration, https://open-
services.net/

and lead to enriched information for analyses done by both
research groups. Finally, we discuss the practical integration of
the tools resulting from a joint work by the authors of this pa-
per, and its benefits.

Our work differs from the contributions of Draheim and
Pekacki [2] in using both Version Control Systems (VCS) and
issue-tracking tools, and from German [3] and Grambow,
Oberhauser and Reichert [4] by being non-specific to one set of
tools. Its results could be utilized by other researchers, for ex-
ample for personal workflow modifications [5][6].

II. ALM DATA AND COMMON MODEL
Any quantitative analysis of software development projects

requires accurate data that describes the various aspects of their
history and product construction. Because any larger software
development project needs appropriate tool support to track
status, activities and artefacts created by project members, data
from these tools are ideally suited to perform such analyses.
ALM tools, which integrate VCS and issue-tracking tools, are a
commonly used family of tools and (if used properly) offer an
objective and detailed history of collaboration patterns and
activities of individual team members.

Different tools vary strongly in their data models, the avail-
ability of analytical and statistical modules, or the granularity
of data stored (e.g., rigorous RTC2 vs. lightweight GitHub3).
However, there is a common underlying set of entities that all
ALM tools use, and that data structures can thus be mapped be
mapped to these entities. In previous work by some of the au-
thors [7], we have devised such a common data model (Fig. 1)
by studying the data structures of several ALM tools. It can
reflect major software development process methodologies
(among others, see [8] for details, ISO 24744 and SPEM – the
Software and Systems Process Engineering Meta-Model), ena-
bling process-centric analysis.

Since not all ALM tools store the project data at the same
level of detail, some meta-model entities need to be analytical-
ly inferred. In Fig. 1, the black entities can be (more-or-less
directly) obtained from ALM data – among them are names

2 http://www-03.ibm.com/software/products/en/rtc
3 https://github.com/

2017 IEEE International Conference on Software Architecture Workshops

978-1-5090-4793-2/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSAW.2017.46

175

and email addresses of project contributors (identities), their
roles and associated work units (tasks). Blue entities need some
analysis or user input (e.g., if there is only one mechanism in
the tool to capture project segments, i.e. coherent parts of the
project’s timeline depending on a specific methodology used,
we need to decide whether they are iterations or phases). The
red entities present deeper specific challenges, for instance
determining activities (sets of related tasks, e.g., performing
product release) or personal competencies.

Even the analysis of the basic SPADe entities like work
units (issues or tickets) and configurations (commits or revi-
sions) can yield interesting and useful results. For example,
only work units and configurations data are needed for check-
ing over- and underestimation patterns or the practice of link-
ing commits to issues, which many projects regard as good
software engineering practice.

The metamodel is specifically constructed to allow for de-
tecting defined best or bad practices (patterns and anti-patterns,
smells) and deviations, and enables similar analysis with re-
spect to social cooperation issues.

III. CODEFACE
The study of socio-technical patterns in software develop-

ment through ALM data analyses can be approached in two

ways. One is to focus on a specific tool and phenomenon first
and widen the scope over time (bottom-up). Another starts with
a general approach and implements it for specific tools (top-
down). The former approach was adopted by the co-authors of
this paper from the Laboratory for Digitalisation (LfD) at the
Technical University of Applied Sciences (OTH) Regensburg
in Germany.

We focus on the study of collaboration among developers
in open source projects through social collaboration networks
and their evolution over time; the tool supports various notions
of “collaboration” like joint work in functions, commit review,
and others. The goal of our research is to study the link be-
tween collaboration structures and product quality. We used
Git VCS data and mailing lists as the primary sources of data.
Weighted graphs describe, for instance, the relationship be-
tween core and peripheral developers and the turnover between
these roles throughout the lifecycle of a project, as well as oth-
er aspects of open source development [1][9][10]. Fig. 2 shows
illustrative examples for different collaboration structures with
developers as nodes and identified collaborative relationships
as edges.

The experimental tool supporting our analyses is called
Codeface and is provided as Open Source Software (OSS). Its
source code and documentation can be found on the supple-

Fig. 1. SPADe domain metamodel.

176

mentary web page4. Though not yet specifically aimed at ar-
chitects, once this role is identified in the collaboration graph,
Codeface can provide comprehensive data on the measure of
their collaboration with other team members and their temporal
changes. However, current underlying data do not include the
roles of the individuals.

The “Patch Stack Analysis” (PaStA) toolkit is another tool
developed at LfD, used to understand socio-technical patterns.
It also analyzes Git repositories and mailing lists, and focuses
on the study of patch stacks (feature-granular modifications of
mainline releases in parallel development). Namely it can iden-
tify patches moved from one stack to another, forward- and
backports and invariants, and the time it took a particular patch
to make it from a patch stack to mainline development [11].
Fig. 3 shows sample results of the analysis.

The next step in PaStA related research aims at the classifi-
cation of patches by purpose (e.g. corrective, feature, etc.) to
estimate their development cost and reuse potential, and to
understand the implications of patches on software mainte-
nance. The data, however, can be filtered to focus on the rela-
tionship between activity of a given team member and its ef-
fects on maintenance cost. Therefore, if the knowledge on the
identity of an architect and the developers he/she collaborates
with can be provided, the general process can be applied to
data specifically tied to his/her activities in the project.

IV. SPADE
A complementary (top-down) approach to ALM tool data

analyses is pursued by the paper co-authors at the Department
of Computer Science and Engineering (DCSE) at the Universi-

4 https://github.com/siemens/codeface

ty of West Bohemia (UWB). It is based on the idea of perform-
ing process pattern analysis on ALM data converted and stored
in a unifying metamodel [8], see also Fig. 1. The primary pur-
pose is detecting well known and/or user defined bad practices
(anti-patterns) in software development, and evaluating how a
project follows defined process practices.

From the perspective of studying architects’ behavior in a
given project, SPADe can serve multiple purposes. First it can
analyze all available project data and assign the role of an ar-
chitect to specific team member(s) based on that analysis, if the
ALM tools used do not assign the role themselves. Second, it
can store and aggregate data on architects’ activities throughout
the project from all the ALM tools used.

Finally, SPADe is designed to store and analyze issue
(work unit) histories. Therefore, by analyzing changes in the
assignee attribute of a work unit, comment content (stored as a
description attribute of change entity) and authors, as well as
issue relations, it can identify activities where an architect is
involved, such as code reviews or architecture-induced refac-
toring request. This includes cases when the task is primarily
assigned to someone else, or when the activity does not leave a
mark in VCS or mailing list data.

V. APPROACHES AND TOOLS INTEGRATION
Collaboration between the two research teams (OTH and

UWB) entailed assessing the feasibility and mutual benefits of
combining our research efforts. Due to the opposing strategies
adopted by the two research tool sets (bottom-up for Codeface
and PaStA, top-down for SPADe), neither of them was on its
own able to fully grasp the complex project structures – includ-
ing the specific issues surrounding the involvement of team
roles such as architects. Therefore it proved desirable to en-
hance each of the tool sets with the current results of the other
one.

On the database layer, a full integration was not yet desira-
ble because of proprietary aspects of the respective databases
that are not useful to the other party. The data models were
however modified by drawing inspiration from one another.
SPADe contributed to Codeface its common entities for data
that are not tool-specific, in particular its section for issue-
tracking data has been modified to use the work unit and
change entities, relations between change and field change (an
entity not visible in the domain model in Fig. 1), and between
work unit and configuration (issue and commit). The attributes
of a Codeface entity issue, previously heavily Bugzilla specif-
ic, were also changed to those of the SPADe work unit (a cor-
responding entity). This way, the Codeface model acquired the
ability to capture the commit-issue relation.

Analysis of Codeface data model and algorithms clarified
some of the more subtle details and challenges of mining Git
repositories and mailing list archives. During these efforts it
was found, that the respective data models were similar in im-
portant aspects, which at the same time simplified their modifi-
cations and informally validated the correctness of the SPADe
metamodel.

Because both approaches use different technologies for
their implementations (Codeface and PaStA are mainly based

Fig. 2. Examples of colaboration network graphs obtained with Codeface.
Nodes represent developers (size is proportional to their centrality) , and
edges describe a collaboration relationship (e.g., joint work on a change).

Fig. 3. PaStA identification of patch stacks (colored dots), back-
/forwardports and invariant patches (indicated by the directed edges).

177

on Python and R, while SPADe utilizes Java) a straightforward
full integration into a single toolset is currently not feasible,
nor is it deemed necessary.

VI. BENEFITS
The enhancement of the Codeface and PaStA data models

by SPADe common entities, which is already finished, allows
us to capture ALM data from various tools and enhance our
analyses with proper issue-tracking data for more complete and
accurate results. The commit-issue relation will provide an
opportunity for a more detailed and accurate determination of
collaboration graphs and developer social networks.

One such case is the ability to study whether architectural
activities have impact on product quality – for instance, the
involvement of software architects in tasks and commits relat-
ed to code refactoring or API development. Another research
question enabled by the integration is to find out where archi-
tects are in reality positioned in the project collaboration struc-
ture – their prevailing communication with contributors in “de-
veloper” roles, can, for instance, signal a different methodolo-
gy than closer links to contributors in project management
roles.

Furthermore, Codeface will significantly benefit from the
use of the data-mining ability of SPADe and its data pumps to
collect data from multiple sources. SPADe data will also be
used to include issue-tracking information into the PaStA patch
classification, which will be useful in analyzing, for instance,
maintenance activities. These can in turn be used to assess
whether architect involvement has impact on the project.

The SPADe meta-model has been influenced in structurally
minor, but nonetheless important ways by the Codeface data
model mainly in the area of VCS and mailing list data. On the
level of analysis, the approach to recognizing multiple identi-
ties (aliases, user names, email addresses, etc.) belonging to the
same person has been adopted from Codeface to SPADe. This
contribution will enhance the quality of SPADe-managed data,
and will allow us to better identify potential architects. The
PaStA classification of patches will provide a basis for deter-
mining change (work unit) classes in SPADe, which in turn
will allow for better detection of architects’ involvement in
tasks of other members. Finally, SPADe will use the results
provided by Codeface and PaStA as indicators for specific anti-
patterns both in- and outside the scope of architects’ activities.

VII. CONCLUSION
We have demonstrated the feasibility of defining a common

data model for data from various ALM tools and its use for
analyses of socio-technical patterns in software development
projects, which is an important part of our research. The use of
this common model in the integration of our teams’ research
tools, which we have practically validated and found mutually
beneficial, will enhance their analytical capabilities. We have
discussed that one of the possible enhanced uses is the evalua-
tion of architects’ behavior in software development and the
impact of the role on different aspects of projects.

Our current focus is to concentrate on using open source
projects as sources of experimental data, due to their straight-
forward availability, and to grow our dataset extensively both
by mining new projects and accessing new sources (so far un-
tapped ALM tools). It is our expectation that the resulting da-
taset based on multiple sources and a common metamodel can
become a valuable resource for independent research on soft-
ware projects and their socio-technical patterns.

ACKNOWLEDGMENT
The work was supported by the Ministry of Education,

Youth and Sports of the Czech Republic – university specific
research grant SGS-2016-018 Data and Software Engineering
for Advanced Applications and project LO1506 (PUNTIS -
Sustainability support of the NTIS Center).

REFERENCES
[1] M. Joblin, S.Apel, and W. Mauerer, “Evolutionary trends of developer

coordination: a network approach,” Empirical Software Engineering,
Springer, Nov. 2016, pp. 1-45, doi: 10.1007/s10664-016-9478-9.

[2] D. Draheim, and L. Pekacki, “Process-centric analytical processing of
version control data,” Principles of Software Evolution, Proc. of 6th Int’l
Workshop on, 2003, pp. 131-136, doi: 10.1109/IWPSE.2003.1231220.

[3] D. M. German, “Mining CVS repositories, the softChange experience,“
Mining Software Repositories (MSR), Proc. of Int’l Workshop on, 2004,
pp. 17-21.

[4] D. M. German, and A. Hindle, “Visualizing the evolution of software
using softChange,” Int’l Journal of Software Engineering and
Knowledge Engineering, vol. 16(1), World Scientific Publ Co Pte Ltd.,
Feb. 2006, pp. 5-21, doi: 10.1142/S0218194006002665.

[5] G. Grambow, R. Oberhauser, and M. Reichert, “Towards a workflow
language for software engineering,” Parallel and Distributed Computing
and Networks / Software Engineering (PDCN, SE), 10th Int’l Conf. on,
ACTA Press, Feb. 2011, doi:10.2316/P.2011.720-020.

[6] G. Grambow, R. Oberhauser, and M. Reichert, “Towards automated
process assessment in software engineering,” Proc. of 7th Int’l Conf. on
Software Engineering Advances (ICSEA), IARIA, Nov. 2012, pp. 289-
295.

[7] P. Pícha, and P. Brada, “ALM Tool Data Usage in Software Process
Metamodeling,” Software Engineering and Advanced Applications
(SEAA), 42th Euromicro Conf. on, IEEE, Aug.-Sep. 2016, pp. 1-8, doi:
10.1109/SEAA.2016.37.

[8] L. García-Borgoñón, M. A. Barcelona, J. A. García-García, M. Alba,
and M. J. Escalona, “Software process modeling languages: A
systematic literature review,” Information and Software Technology,
vol. 56(2), Elsevier, Feb. 2014, pp. 103-116,
doi:10.1016/j.infsof.2013.10.001.

[9] M. Joblin, W. Mauerer, S. Apel, J. Siegmind and D. Riehle, “From
developer networks to verified communities: a fine-grained approach,”
Int’l Con. on Software Engineering (ICSE), Proc. of the 37th, IEEE
Press, May 2015, pp 563-573, doi: 10.1109/ICSE.2015.73.

[10] M. Joblin, S. Apel, C. Hunsen and W. Mauerer, “Classifying Developers
into Core and Peripheral: An Empirical Study on Count and Network
Metrics,” Int’l Conference on Software Engineering (ICSE), Proc. of the
39th, IEEE Press, May 2017.

[11] R. Ramsauer, D. Lohmann and W. Mauerer, “Observing Custom
Software Modifications: A Quantitative Approach of Tracking the
Evolution of Patch Stacks,” Symposium on Open Collaboration
(OpenSym), Proc. of 12th Int’l, ACM, Aug. 2016, doi:
10.1145/2957792.2957810.

178

