
Nullius in Verba: Reproducibility for Database
Systems Research, Revisited
Wolfgang Mauerer

Technical University of Applied Sciences Regensburg
Siemens AG, Corporate Research

Regensburg/Munich, Germany
wolfgang.mauerer@othr.de

Stefanie Scherzinger
University of Passau

Passau, Germany
stefanie.scherzinger@uni-passau.de

Abstract—Over the last decade, reproducibility of experimental
results has been a prime focus in database systems research,
and many high-profile conferences award results that can be
independently verified. Since database systems research involves
complex software stacks that non-trivially interact with hardware,
sharing experimental setups is anything but trivial: Building a
working reproduction package goes far beyond providing a DOI
to some repository hosting data, code, and setup instructions.

This tutorial revisits reproducible engineering in the face of
state-of-the-art technology, and best practices gained in other
computer science research communities. In particular, in the
hands-on part, we demonstrate how to package entire system
software stacks for dissemination. To ascertain long-term reprodu-
cibility over decades (or ideally, forever), we discuss why relying
on open source technologies massively employed in industry
has essential advantages over approaches crafted specifically for
research. Supplementary material shows how version control
systems that allow for non-linearly rewriting recorded history
can document the structured genesis behind experimental setups
in a way that is substantially easier to understand, without
involvement of the original authors, compared to detour-ridden,
strictly historic evolution.

Index Terms—reproducible science, reproduction, reproduc-
tion package, docker, git, scientific attribution, scientific method

I. INTRODUCTION & TITLE

The tutorial Nullius in Verba: Reproducibility for Database
Systems Research, Revisited addresses one of the most crucial,
yet unfortunately often underappreciated aspects of science:
The provision of sufficient information on technical aspects,
methodology, and computational steps to reproduce published
results. Nullius in verba, the motto of the Royal Society as
embodied in their coat of arms for centuries, is an epitome
to the importance of this desideratum. Contemporary means
of information technology make it easier than ever to realise
the goal of pervasive reproducibility in science. Yet perhaps
paradoxically, these means are far from receiving universal
consideration and support: A survey (published in Nature [1])
among scientists shows that 70% have failed to replicate other
work, and more than half have struggled to reproduce their
own (!) experiments.

This discrepancy has become an academic topic of debate,
and dedicated research evaluates the (oftentimes wanting)
state of affairs in computer science research in general (see,
e.g., Refs. [2]–[5]), and also in data management research

in particular, such as in the VLDB (“pVLDB Reproducibil-
ity”) and SIGMOD communities [6] (“ACM SIGMOD 2019
Reproducibility”) (PDF provides clickable hyperlinks).

Unfortunately, the terminology is not globally standardised,
but in the following, we adopt the conventions of the ACM
(see “ACM review and badging”): experiments are expected
to be repeatable; essentially, the same team with the same
experimental setup can reliably achieve identical results in
subsequent trials. Moreover, experiments should be reprodu-
cible, so that using the same experimental setup operated by a
different team achieves the same results. Note that the ACM
changed the definition of these terms on August 24, 2020.

Over the years, high-quality tutorials on reproducible engi-
neering have been presented at database conferences [7]–[9]
(and have recently been awarded1). After a decade of intense
debate, we revisit this discussion by contrasting the state-of-
the-art in reproducible engineering today in retrospective to
earlier tutorials, and show lessons learned. Besides considering
experience from multiple fields of computer science, we also
include industrial recommendations: Reproducibility is a core
concern of commercial systems engineering, where mainten-
ance and simultaneous continuous development activities often
span decades.2 Methods and approaches developed in such
scenarios also apply to scientific problems.

The approach we advocate in our tutorial rests on two pillars:
1.) Provisioning reproduction packages in a multi-stage

process that distinguishes between (a) deterministically
building executable artefacts from source (ideally bit-
wise constant) in a likewise deterministically constructed
build environment, (b) bundling artefacts, input data and
instrumentation scripts into a self-contained collection
(inspired by the concept of apps), and (c) the execution
of any measurement-based evaluations and experiments
on diverse hardware, including output validation.

2.) Ascertaining long-term availability (over decades), based
on open source community-supported, mature approaches

1SIGMOD 2020 contribution award: https://sigmod.org/sigmod-awards/
citations/2020-sigmod-contributions-award/.

2Consider the Boeing 747 aircraft as an extreme example: development
started in 1966, and the last machines produced in 2022 will be in service until
about 2050. This results in industrial maintenance and continuous development
that spans almost a century.

https://vldb-repro.com/
https://vldb-repro.com/
http://db-reproducibility.seas.harvard.edu/
http://db-reproducibility.seas.harvard.edu/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://sigmod.org/sigmod-awards/citations/2020-sigmod-contributions-award/
https://sigmod.org/sigmod-awards/citations/2020-sigmod-contributions-award/


that are themselves based on reproducible and long-term
archived data formats, tools and conventions.
We argue, using examples, why the plain availability of
portable source code, input data, build mechanisms and
dispatcher scripts that were considered as gold standard a
decade ago almost always fail to provide such guarantees.

We will not be able to discuss the technical aspects of
preparing research artefacts; we assume that attendees are
aware of how to ensure their results are available in a structured,
logically consistent way (as compared to showing only the
final state of research, or a complete temporal revision control
system log). We will, however, provide supplementary material
that shows how programs (and their temporal evolution) can
be prepared as communication with fellow humans instead of
instructions for machines, following Knuth’s seminal literate
programming approach [10]. Our supplements are based on
pragmatic approaches developed in large, international and
multi-disciplinary infrastructure projects like the Linux kernel.

Our tutorial will, using live and hands-on examples, discuss
which state-of-the-art software and approaches allow for
creating reproduction packages that enable third parties to
understand existing research in detail, perform the exactly
same experiments and evaluations as the original authors, and
fully reproduce published results. We particularly consider how
to ascertain that a reproduction works reliably and robustly
without assistance by the original authors, possibly after times
has passed since publication.

II. TUTORIAL PRESENTERS

Wolfgang Mauerer is a professor of theoretical computer
science at the Technical University of Applied Sciences Regens-
burg, and a senior research scientist at Siemens AG, Corporate
Research, Munich. His interests focus on quantitative and
empirical software engineering, low-level systems engineering,
and quantum computing. He received his PhD in physics (where
performing reproducible measurements and experiments is
one of the key educational aspects) from the Max Planck
Institute for the Science of Light. He has worked extensively
with open source communities for commercial and academic
purposes, and many of his papers have received recognitions for
reproducible science. He is one of the founders and a member
of the technical steering committee of the Civil Infrastructure
Platform, an international consortium dedicated to providing
ultra-long-term maintainable software base platforms with
multi-decade lifetimes—a challenge that has the reproducible
provision of curated, rapidly changing software components at
its very core.

Stefanie Scherzinger is a professor at the University of
Passau, where, as of recently, she chairs the Scalable Database
Systems group. Traditionally, her research has had a focus on
schema evolution, and is motivated by her previous work exper-
ience as a software engineer at first IBM and then Google. At
Google, she was involved with achieving reproducible software
builds by managing dependencies between software libraries,
a challenge that is quite related to achieving reproducible
results in academic research. In particular, her recent work on

conducting and reproducing schema evolution case studies has
sparked her interest in reproducible engineering.

The presenters’ diverse domain knowledge, and their ex-
pertise in both academic research and commercial software
development, enables them to provide a multi-facetted discus-
sion of challenges, and a balanced evaluation of the benefits
and drawbacks of alternative approaches.

III. SUPPLEMENT: ARTEFACT PREPARATION

We provide (optional) supplementary material that can
be worked through prior to the tutorial, and addresses the
creation of author-supplied components and their document-
ation. Reproduction packages typically consist of several
artefacts: Generated or pre-existing input data, processing and
measurement code, output or derived data, and visualisation
scripts. Additionally, they may contain extensions to existing
software.

Such complex packages are the result of an iterative process
that usually produces an incremental, step-wise understanding
of features or hypotheses. Eventually, this leads to either
accepting or refuting a hypothesis, or to performing final,
definitive runs of a measurement after a series of pre-trials,
followed by the evaluation of the results. This raises the
question of what (and what not!) to document in a reproduction
package, and how.

While any structural decisions are worth preserving, the
temporal order of the thought process that led to intermediate
results or to said decisions is usually not. Standard log books,
or version control system logs are a modern digital alternative.
Yet typically, these contain many unproductive detours that do
not provide significant illumination, or they document transient
technical issues and glitches. In either case, such minutiae make
it harder than necessary for third-party researchers to follow the
line of work that resulted in a particular finding. Our supplement
uses examples from published research, and demonstrates how
a chronological line of thought that invariably arises in research
can be turned into a consistent, logical sequence of steps that
represents the outcomes of the thought process, not unlike
propagated in literate programming [10]. Especially nonlinear
history rewriting as offered by modern revision control systems
is a powerful, yet not often utilised means to achieve these
ends. The efforts result in patch stacks comprising orthogonal
commits (i.e., the smallest reasonable increment in research
code or analysis scripts that is worth preserving) that are also
well suited to augment existing software with new functionality,
and to build components that comprise external and custom-
developed parts.

Additionally, we include examples for established conven-
tions on documenting commits that have been devised to
understand the historical evolution of large software systems,
but can likewise be applied to documenting research progress.
Techniques to provide trails of responsibility (who jointly
authored changes, who provided reviews, who participated
in design decisions etc.) that are routinely created outside aca-
demia, but not established in many areas of computer science,

https://www.cip-project.org
https://www.cip-project.org


contrariwise to the care taken in giving credit and attribution
in published papers, are exemplified in the supplement.

IV. TUTORIAL OUTLINE

The tutorial focuses on the reproducible composition of
long-term stable execution environments that run software code
and analysis scripts produced as research artefacts. Almost all
research relies on standard IT base systems like Linux and
Windows. It is well-known that such systems exhibit drastic
change rates in terms of adding new features, deprecating old
ones, or changing the semantics of features.

a) Packaging research artefacts: Stable environments
for both, building and executing experiment code (including
compilers, middleware, libraries, and possibly also an OS
kernel) are required. Additionally, issues specific to data-centric
research like the provision of voluminous amounts of data must
be considered.

We show how to combine (and identify!) any required
base components that must be included in from-scratch
system installations, how to automatically compose these into
stand-alone collections (i.e., a virtual machine that produces
identical result regardless of the host system), and how to
run scientific analyses on them. We also address the question
how to best integrate the creation of such collections into the
research process from the start, with little overhead, and how
geographically distributed research benefits from the effort.

We give guidelines when to rely on binary system sources for
distribution-level software, and when to re-build components
from source. We also investigate the question of long-term
availability of external sources, and provide guidelines on how
to not rely on the long-term availability of these.

Since a substantial fraction of published research relies on
and interacts with open source software that is also included
in packages, we briefly discuss typical license options and
the arising obligations. This includes integrating closed-source
systems and handling non-disclosure agreements.

b) Describing execution environments: Finally, we illus-
trate means of properly specifying combinations of hardware
and software. Underspecifying the execution environment has
been identified an issue in previous tutorials on reproducible
engineering (e.g., see [7]), and still seems to be an ongoing
education process within the community.

Typical specifications provide experimental conditions like
“Linux version 5.1.92 on a Dull Powervortex 4711 with
24 GiB of RAM was used”. This is insufficient for reliable
reproductions—non-standard kernel extensions that may vary
widely depending on the distribution, specific settings for tuning
parameters that exist in a wide variety on every system, and
many other factors that may easily be dismissed as irrelevant
technical details can impact the results of measurements by
orders of magnitude, as our tutorial will demonstrate.

The overall process and artefact collection that we advocate
in the tutorial is illustrated in Figure 1: A Docker build
recipe produces a whole-system container in an open, publicly
documented format that can be generated without modifying
the host system. The build recipe performs the composition,

and integrates binary sources (pre-compiled executables for
standard tasks, but possibly also input data), custom research
software, and changes to existing source codes in form of
orthogonal patch stacks. Any measurements and experiments
performed in a paper can then either be directly performed
within the container, or on external hardware, both local
machines and cloud deployments. To guarantee a consistent
execution environment regardless of the underlying target
platform, we show how a collection with executables for all
measurements, dispatchers and evaluation scripts, and data
generators or pre-generated data sets should be created. By
transferring this collection to a target, experiments can be
automatically executed, and charts, tables, and other forms of
visualisation be generated.

c) Further challenges: Finally, the tutorial addresses how
to handle a number of details that may seem trivial, but
often lead to substantial problems when trying to perform
an independent reproduction years after publication (e.g., as
we discuss in Ref. [12]):

• documenting and automating the mechanics of an analysis
process,

• creating long-term available, DOI-safe archives of all
artefacts that really work (which is not always guaranteed
by following the DOI requirements),

• making measurements on hardware reproducible, and
limitations of the endeavour,

• ascertaining (ideally bit-wise) reproducible builds, and the
limits thereof,

• dealing with proprietary and closed-source components.
We round up the discussion by identifying some bad practices

and anti-patterns of reproducible research.

V. MODE OF DELIVERY

We will provide a pre-fabricated docker image that is
systematically extended during the tutorial session, and that
can serve as blueprint for reproduction packages.

VI. TARGET AUDIENCE

Our target audience includes anyone who actively performs
and publishes scientific research, from beginning graduate
students coming up to speed with contemporary research
methods, to seasoned researchers and faculty who want to
improve their reproducibility skills, or want to learn about
technological developments and new tools that might not have
been in common use when they started their careers.

The tutorial introduces the audience to established methods
of creating reproduction packages [13]–[15], inspired by
working conventions from multiple fields of science, and
tailored for typical scenarios as they arise in database systems
research. We hope to further the use of such methods and
techniques in research from the ground up, which should lead
to more robust and trustworthy results, and a community that
has more time to build upon existing results (and therefore,
stand on the shoulders of giants) instead of re-building previous
research artefacts from PhD generation to PhD generation.



Docker Container

Public Git
Repository

Patch
StackBinaries

Build
Recipe

Data +
Generators

DispatcherEvaluation

Experiment Execution Package

Cloud
Deployment

Results A

Charts A

Local HW
Deployment

Results B

Charts B

A −→ B, B integrates A
A =⇒ B, B is produced by A

Temporal flow

1

2

3

4

5

Figure 1. Structure of reproduction packages as advocated in the tutorial: Based on system binaries, external and internal code in git repositories, and
patch stacks with changes to existing components (both organised as orthogonal changes with proper credit tracking), a build recipe induces generation of
a host-system independent docker container as (static and immutable) build environment for measurement binaries (1). The result of the build process is
an experiment execution package (2) that can be deployed (3) on cloud systems, or on local hardware, each time without any dependence on target-system
provided artefacts. The experimental runs (4) generate data, which are post-processed, evaluated and visualised (5) by scripts and code contained in the
measurement package. (Illustration taken from [11].)

Acknowledgement. Stefanie Scherzinger’s contribution was supported
by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – 385808805.

REFERENCES

[1] M. Baker, “Is there a reproducibility crisis?” Nature, vol. 533, pp. 452–
454, 05 2016.

[2] D. Abadi, A. Ailamaki, D. Andersen, P. Bailis et al., “The Seattle Report
on Database Research,” SIGMOD Rec., vol. 48, no. 4, Feb. 2020.

[3] M. Pawlik, T. Hütter, D. Kocher, W. Mann, and N. Augsten, “A Link is
not Enough – Reproducibility of Data,” Datenbank-Spektrum, vol. 19,
no. 2, pp. 107–115, Jul 2019.

[4] I. Manolescu, L. Afanasiev, A. Arion, J. Dittrich et al., “The repeatability
experiment of SIGMOD 2008,” SIGMOD Rec., vol. 37, no. 1, pp. 39–45,
2008.

[5] C. Collberg and T. A. Proebsting, “Repeatability in Computer Systems
Research,” Commun. ACM, vol. 59, no. 3, p. 62–69, Feb. 2016.

[6] S. Manegold, I. Manolescu, L. Afanasiev, J. Feng et al., “Repeatability
& workability evaluation of SIGMOD 2009,” SIGMOD Rec., vol. 38,
no. 3, pp. 40–43, 2009.

[7] S. Manegold and I. Manolescu, “Performance Evaluation in Data-
base Research: Principles and Experience,” in Proc. EDBT ’09,

2009, slide deck at https://homepages.cwi.nl/∼manegold/DBDM/
DBexperimentsTutorial-1x1.pdf.

[8] P. Bonnet, D. Shasha, and J. Freire, “Computational reproducibility:
state-of-the-art, challenges, and database research opportunities,” in Proc.
SIGMOD ’12, 2012, pp. 593–596.

[9] I. Manolescu and S. Manegold, “Performance Evaluation in Database
Research: Principles and Experience,” in Proc. ICDE ’08, 2008.

[10] D. E. Knuth, “Literate programming,” Comput. J., vol. 27, no. 2, p.
97–111, May 1984.

[11] W. Mauerer, R. Ramsauer, E. R. L. Filho, and S. Scherzinger, “Silentium!
Run-Analyse-Eradicate the Noise out of the DB/OS Stack,” in Proc. BTW

’21, 2021.
[12] D. Braininger, W. Mauerer, and S. Scherzinger, “Replicability and

reproducibility of a schema evolution study in embedded databases,”
Proc. EmpER 2020, 2020.

[13] C. Boettiger, “An introduction to Docker for reproducible research,” ACM
SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71–79, 2015.

[14] R. Chamberlain and J. Schommer, “Using docker to support reproducible
research,” DOI: https://doi. org/10.6084/m9. figshare, vol. 1101910, p. 44,
2014.

[15] W. Elmenreich, P. Moll, S. Theuermann, and M. Lux, “Making computer
science results reproducible – A case study using Gradle and Docker,”
PeerJ Preprints, vol. 6, 2018.

https://homepages.cwi.nl/~manegold/DBDM/DBexperimentsTutorial-1x1.pdf
https://homepages.cwi.nl/~manegold/DBDM/DBexperimentsTutorial-1x1.pdf

	Introduction & Title
	Tutorial presenters
	Supplement: Artefact Preparation
	Tutorial Outline
	Mode of Delivery
	Target Audience
	References

