
Nullius in Verba: Reproducibility for Database
Systems Research, Revisited
Wolfgang Mauerer

Technical University of Applied Sciences Regensburg
Siemens AG, Corporate Research

Regensburg/Munich, Germany
wolfgang.mauerer@othr.de

Stefanie Scherzinger
University of Passau

Passau, Germany
stefanie.scherzinger@uni-passau.de

Abstract—Over the last decade, reproducibility of experimental
results has been a prime focus in database systems research, and
many high-profile conferences award results that can be inde-
pendently verified. Since database systems research involves com-
plex software stacks that non-trivially interact with hardware,
sharing experimental setups is anything but trivial: Building a
working reproduction package goes far beyond providing a DOI
to some repository hosting data, code, and setup instructions.

This tutorial revisits reproducible engineering in the face of
state-of-the-art technology, and best practices gained in other
computer science research communities. In particular, in the
hands-on part, we demonstrate how to package entire system
software stacks for dissemination. We show how version control
systems that allow for non-linearly rewriting recorded history
can document the structured genesis behind experimental setups
in a way that is substantially easier to understand, without
involvement of original authors, compared to detour-ridden,
strictly historic evolution. To ascertain long-term reproducibility
over decades (or ideally, forever), we discuss why relying on open
source technologies massively employed in industry has essential
advantages over approaches crafted specifically for research.

Index Terms—reproducible science, reproduction, reproduc-
tion package, docker, git, scientific attribution, scientific method

I. INTRODUCTION & TITLE

The tutorial Nullius in Verba: Reproducibility for Database
Systems Research, Revisited addresses one of the most crucial,
yet unfortunately often underappreciated aspects of science:
The provision of sufficient information on technical aspects,
methodology, and computational steps to reproduce published
results. Nullis in verba, the motto of the Royal Society as
embodied in their coat of arms for centuries, is an epitome
to the importance of this desideratum. Contemporary means
of information technology make it easier than ever to realise
the goal of pervasive reproducibility in science. Yet perhaps
paradoxically, these means are far from receiving universal
consideration and support: A survey (published in Nature [1])
among scientists shows that 70% have failed to replicate other
work, and more than half have struggled to reproduce their
own(!) experiments.

This discrepancy has become an academic topic of debate,
and dedicated research evaluates the (oftentimes wanting)
state of affairs in computer science research in general (see,
e.g., Refs. [2]–[5]), and also in data management research in

particular, such as in the VLDB (“pVLDB Reproducibility”)
and SIGMOD communities [6] (“ACM SIGMOD 2019 Re-
producibility”) (PDF provides clickable hyperlinks).

Unfortunately, the terminology is not globally standardised,
but in the following, we adopt the corresponding conventions
of the ACM (see “ACM review and badging”): experiments
are expected to be repeatable; essentially, the same team with
the same experimental setup can reliably achieve identical
results in subsequent trials. Moreover, experiments should
be reproducible, so that using the same experimental setup
operated by a different team achieves the same results. Note
that the ACM changed the definition of these terms on Aug
24, 2020.

Over the years, high-quality tutorials on reproducible engin-
eering have been presented at database conferences [7]–[9]
(and have recently been awarded1). After a decade of intense
debate, we revisit this discussion by contrasting the state-of-
the-art in reproducible engineering today in retrospective to
earlier tutorials, and show lessons learned. Besides considering
experience from multiple fields of computer science, we also
include industrial recommendations: Reproducibility is a core
concern of commercial systems engineering, where mainten-
ance and simultaneous continuous development activities often
span decades.2 Methods and approaches developed in such
scenarios also apply to scientific problems.

The approach we advocate in our tutorial rests on three pillars:
1.) Presenting the genesis of results in a structured, logically

consistent way, instead of showing only the final state of
research, or a complete temporal revision control system
log. Following Knuth’s seminal literate programming ap-
proach [10], we argue why programs (and their temporal
evolution) should be seen as communication with fellow
humans instead of instructions for machines to ease future
reproduction. We use pragmatic approaches developed in
large, international and multi-disciplinary infrastructure
projects like the Linux kernel to achieve this goal.

1SIGMOD 2020 contribution award: https://sigmod.org/sigmod-awards/
citations/2020-sigmod-contributions-award/.

2Consider the Boeing 747 aircraft as an extreme example: development
started in 1966, and the last machines produced in 2022 will be in service until
about 2050. This results in industrial maintenance and continuous development
that spans almost a century.

https://vldb-repro.com/
http://db-reproducibility.seas.harvard.edu/
http://db-reproducibility.seas.harvard.edu/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://sigmod.org/sigmod-awards/citations/2020-sigmod-contributions-award/
https://sigmod.org/sigmod-awards/citations/2020-sigmod-contributions-award/


2.) Provisioning reproduction packages in a multi-stage
process that distinguishes between (a) deterministically
building executable artefacts from source (ideally bit-
wise constant) in a likewise deterministically constructed
build environment, (b) bundling artefacts, input data and
instrumentation scripts into a self-contained collection
(inspired by the concept of apps), and (c) the execution
of any measurement-based evaluations and experiments
on diverse hardware, including output validation.

3.) Ascertaining long-term availability (over decades), based
on open source community-supported, mature approaches
that are themselves based on reproducible and long-term
archived data formats, tools and conventions.
We argue, using examples, why the plain availability of
portable source code, input data, build mechanisms and
dispatcher scripts that were considered as gold standard a
decade ago almost always fail to provide such guarantees.

Our tutorial will, using live and hands-on examples, dis-
cuss which state-of-the-art software and approaches allow for
creating reproduction packages that enable third parties to
understand existing research in detail, perform the exactly
same experiments and evaluations as the original authors, and
fully reproduce published results. We particularly consider
how to ascertain that a reproduction (really and realistically)
works without assistance by the original authors, and after
substantial periods of time have passed since publication.

II. TUTORIAL PRESENTERS

Wolfgang Mauerer is a professor of theoretical computer
science at the Technical University of Applied Sciences Re-
gensburg, and a senior research scientist at Siemens AG,
Corporate Research, Munich. His interests focus on quant-
itative and empirical software engineering, low-level systems
engineering, and quantum computing. He received his PhD
in physics (where performing reproducible measurements and
experiments is one of the key educational aspects) from the
Max Planck Institute for the Science of Light. He has worked
extensively with open source communities for commercial
and academic purposes, and many of his papers have re-
ceived recognitions for reproducible science. He is one of the
founders and a member of the technical steering committee of
the Civil Infrastructure Platform, an international consortium
dedicated to providing ultra-long-term maintainable software
base platforms with multi-decade lifetimes – a challenge that
has the reproducible provision of curated, rapidly changing
software components at its very core.

Stefanie Scherzinger is a professor at the University of
Passau, where, as of recently, she chairs the Scalable Database
Systems group. Traditionally, her research has had a focus on
schema evolution, and is motivated by her previous work ex-
perience as a software engineer at first IBM and then Google.
At Google, she was involved with achieving reproducible
software builds by managing dependencies between software
libraries, a challenge that is quite related to achieving repro-
ducible results in academic research. In particular, her recent

work on conducting and reproducing schema evolution case
studies has sparked her interest in reproducible engineering.

The presenters’ diverse domain knowledge, and their ex-
pertise in both academic research and commercial software
development, enables them to provide a multi-facetted discus-
sion of challenges, and a balanced evaluation of the benefits
and drawbacks of alternative approaches.

III. OUTLINE

The proposed tutorial is structured as follows.
a) Producing consistent, readable histories: The first

part of the tutorial addresses the creation of author-supplied
components, and their documentation. Reproduction packages
typically consist of several artefacts: Generated or pre-existing
input data, processing and measurement code, output or de-
rived data, and visualisation scripts. Additionally, they may
contain extensions to existing software.

Such complex packages are the result of an iterative process
that usually produces an incremental, step-wise understanding
of features or hypotheses. Eventually, this leads to either
accepting or refuting a hypothesis, or to performing final,
definitive runs of a measurement after a series of pre-trials,
followed by the evaluation of the results. This raises the
question of what (and what not!) to document in a reproduction
package, and how.

While any structural decisions are worth preserving, the
temporal order of the thought process that led to intermediate
results or to said decisions is usually not. Standard log books,
or version control system logs are a modern digital alternative.
Yet typically, these contain many unproductive detours that do
not provide significant illumination, or they document transient
technical issues and glitches. In either case, such minutiae
make it harder than necessary for third-party researchers to
follow the line of work that resulted in a particular finding.
Using examples from published research, we demonstrate
how a chronological line of thought that invariably arises in
research can be turned into a consistent, logical sequence of
steps that represents the outcomes of the thought process, not
unlike propagated in literate programming [10]. Especially
nonlinear history rewriting as offered by modern revision
control systems is a powerful, yet not often utilised means
to achieve these ends. The efforts result in patch stacks
comprising orthogonal commits (i.e., the smallest reasonable
increment in research code or analysis scripts that is worth
preserving) that are also well suited to augment existing
software with new functionality, and to build components that
comprise external and custom-developed parts.

Additionally, we discuss established conventions for doc-
umenting commits that have been devised to understand the
historical evolution of large software systems, but can likewise
be applied to documenting research progress. Similarly, we
introduce techniques to provide trails of responsibility (who
jointly authored changes, who provided reviews, who particip-
ated in design decisions etc.) that are routinely created outside
academia, but not established in many areas of computer

https://www.cip-project.org


science, contrariwise to the care taken in giving credit and
attribution in published papers.

As an alternative solution to turning chronological records
into structured logs, we discuss the use of scientific notebooks
like Jupyter, where similar goals can be achieved with system-
atic document reorganisation.

b) Packaging research artefacts: The second part of the
tutorial focuses on the reproducible composition of long-term
stable execution environments that run software code and ana-
lysis scripts produced as research artefacts. Almost all research
relies on standard IT base systems like Linux and Windows,
and it is well known that such systems exhibit drastic change
rates in terms of adding new features, deprecating old ones,
or changing the semantics of existing ones.

Stable environments for both, building and executing ex-
periment code (including compilers, middleware, libraries,
and possibly also an OS kernel) are required. Additionally,
issues specific to data-centric research like the provision of
voluminous amounts of data must be considered.

We show how to combine (and identify!) any required base
components that must be included in from-scratch system
installations, how to automatically compose these into stand-
alone collections (i.e., a virtual machine that produces identical
result regardless of a the host system), and how to run
scientific analyses on them. We also address the question
how to best integrate the creation of such collections into the
research process from the start, with little overhead, and how
geographically distributed research benefits from the effort.

We give guidelines when to rely on binary system sources
for distribution-level software, and when to re-build compon-
ents from source. We also investigate the question of long-term
availability of external sources, and provide guidelines on how
to not rely on the long-term availability of these.

Since a substantial fraction of published research relies on
and interacts with open source software that is also included
in packages, we briefly discuss typical license options and
the arising obligations. This includes integrating closed-source
systems and handling non-disclosure agreements.

c) Describing execution environments: Finally, we illus-
trate means of properly specifying combinations of hardware
and software. Underspecifying the execution environment has
been identified an issue in previous tutorials on reproducible
engineering (e.g., see [7]), and still seems to be an ongoing
education process within the community.

Typical specifications provide experimental conditions like
“Linux version 5.1.92 on a Dull Powervortex 4711 with
24 GiB of RAM was used”. This is insufficient for reliable
reproductions—non-standard kernel extensions that may vary
widely depending on the distribution, specific settings for tun-
ing parameters that exist in a wide variety on every system, and
many other factors that may easily be dismissed as irrelevant
technical details can impact the results of measurements by
orders of magnitude, as our tutorial will demonstrate.

The overall process and artefact collection that we advocate
in the tutorial is illustrated in Figure 1: A Docker build
recipe produces a whole-system container in an open, publicly

documented format that can be generated without modifying
the host system. The build recipe performs the composition,
and integratesm binary sources (pre-compiled executables for
standard tasks, but possibly also input data), custom research
software, and changes to existing source codes in form of
orthogonal patch stacks. Any measurements and experiments
performed in a paper can then either be directly performed
within the container, or on external hardware, both local
machines and cloud deployments. To guarantee a consistent
execution environment regardless of the underlying target
platform, we show how a collection with executables for all
measurements, dispatchers and evaluation scripts, and data
generators or pre-generated data sets should be created. By
transferring this collection to a target, experiments can be
automatically executed, and charts, tables, and other forms of
visualisation be generated.

d) Further challenges: Finally, the tutorial addresses
how to handle a number of details that may seem trivial, but
often lead to substantial problems when trying to perform an
independent reproduction years after publication (e.g., as we
discuss in Ref. [11]):

• documenting and automating the mechanics of an ana-
lysis process,

• creating long-term available, DOI-safe archives of all
artefacts that really work (which is not always guaranteed
by following the DOI requirements),

• making measurements on hardware reproducible, and
limitations of the endeavour,

• ascertaining (ideally bit-wise) reproducible builds, and
the limits thereof,

• dealing with proprietary and closed-source components.
We round up the discussion by identifying some bad prac-

tices and anti-patterns of reproducible research.

IV. MODE OF DELIVERY

For the hands-on part of the tutorial, we assume that our at-
tendees have a working installation of docker on their machine
(which can run Linux, Windows, or MacOS). Additionally,
we assume a working git installation, some familiarity with
the command line (which we will prefer over GUI based
tools, because it allows for a very efficient workflow that does
not add much overhead to the usual research routine, once
mastered), a text-based editor, and either Python or R to follow
the data analysis examples.

We will provide a pre-fabricated docker image that is
systematically extended during the tutorial session, and that
can serve as blueprint for reproduction packages.

We have designed the tutorial so that it can be taught in a
virtual format that does not require physical presence, as is
usual in these pandemic days.

V. LENGTH

The intended length of the tutorial is 3 hours, roughly split
between the discussion of the two aspects of (a) consistent and
understandable histories and (b) packaging research artefacts.

https://ipython.org/notebook.html


Docker Container

Public Git
Repository

Patch
StackBinaries

Build
Recipe

Data
+Generators

DispatcherBinaries

Experiment Execution Package

Cloud
deployment

Results A

Charts A

Local HW
deployment

Results B

Charts B

1

2

3

4

5

A −→ B, B integrates A
A =⇒ B, B is produced by A

Figure 1. Structure of reproduction packages as advocated in the tutorial: Based on system binaries, external and internal code in git repositories, and
patch stacks with changes to existing components (both organised as orthogonal changes with proper credit tracking), a build recipe induces generation of
a host-system independent docker container as (static and immutable) build environment for measurement binaries (1). The result of the build process is
an experiment execution package (2) that can be deployed (3) on cloud systems, or on local hardware, each time without any dependence on target-system
provided artefacts. The experimental runs (4) generate data, which are post-processed, evaluated and visualised (5) by scripts and code contained in the
measurement package.

It would be possible to limit the tutorial to 1.5 hours, and
only cover the second aspect. Ascertaining the goals of the
latter is more pressing than the former, but the presenters feel
that both topics are best addressed together.

VI. TARGET AUDIENCE

Our target audience includes anyone who actively performs
and publishes scientific research, from beginning graduate
students coming up to speed with contemporary research
methods, to seasoned researchers and faculty who want to
improve their reproducibility skills, or want to learn about
technological developments and new tools that might not have
been in common use when they started their careers.

The tutorial introduces the audience to established methods
of creating reproduction packages [12]–[14], inspired by work-
ing conventions from multiple fields of science, and tailored
for typical scenarios as they arise in database systems research.
We hope to further the use of such methods and techniques
in research from the ground up, which should lead to more
robust and trustworthy results, and a community that has more
time to build upon existing results (and therefore, stand on the
shoulders of giants) instead of re-building previous research
artefacts from PhD generation to PhD generation.

VII. PRIOR OFFERINGS

This tutorial has not been offered before in this form.

We are aware of earlier tutorials from within the database
research community, e.g., [7], [8], also at ICDE [9], from
about ten years ago. Our proposal revisits this important
topic, discusses new methodologies and considerations, and
the effectiveness of previous guidance from hindsight.

REFERENCES

[1] M. Baker, “Is there a reproducibility crisis?” Nature, vol. 533, pp. 452–
454, 05 2016.

[2] D. Abadi, A. Ailamaki, D. Andersen, P. Bailis et al., “The Seattle Report
on Database Research,” SIGMOD Rec., vol. 48, no. 4, Feb. 2020.

[3] M. Pawlik, T. Hütter, D. Kocher, W. Mann, and N. Augsten, “A Link is
not Enough – Reproducibility of Data,” Datenbank-Spektrum, vol. 19,
no. 2, pp. 107–115, Jul 2019.

[4] I. Manolescu, L. Afanasiev, A. Arion, J. Dittrich et al., “The repeatability
experiment of SIGMOD 2008,” SIGMOD Rec., vol. 37, no. 1, pp. 39–45,
2008.

[5] C. Collberg and T. A. Proebsting, “Repeatability in Computer Systems
Research,” Commun. ACM, vol. 59, no. 3, p. 62–69, Feb. 2016.

[6] S. Manegold, I. Manolescu, L. Afanasiev, J. Feng et al., “Repeatability
& workability evaluation of SIGMOD 2009,” SIGMOD Rec., vol. 38,
no. 3, pp. 40–43, 2009.

[7] S. Manegold and I. Manolescu, “Performance Evaluation in Data-
base Research: Principles and Experience,” in Proc. EDBT ’09,
2009, slide deck at https://homepages.cwi.nl/∼manegold/DBDM/
DBexperimentsTutorial-1x1.pdf.

[8] P. Bonnet, D. Shasha, and J. Freire, “Computational reproducibility:
state-of-the-art, challenges, and database research opportunities,” in
Proc. SIGMOD ’12, 2012, pp. 593–596.

[9] I. Manolescu and S. Manegold, “Performance Evaluation in Database
Research: Principles and Experience,” in Proc. ICDE ’08, 2008.

[10] D. E. Knuth, “Literate programming,” Comput. J., vol. 27, no. 2, p.
97–111, May 1984.

[11] D. Braininger, W. Mauerer, and S. Scherzinger, “Replicability and
reproducibility of a schema evolution study in embedded databases,”
Proc. EmpER 2020, 2020.

[12] C. Boettiger, “An introduction to Docker for reproducible research,”
ACM SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71–79,
2015.

[13] R. Chamberlain and J. Schommer, “Using docker to support reproducible
research,” DOI: https://doi. org/10.6084/m9. figshare, vol. 1101910,
p. 44, 2014.

[14] W. Elmenreich, P. Moll, S. Theuermann, and M. Lux, “Making computer
science results reproducible – A case study using Gradle and Docker,”
PeerJ Preprints, vol. 6, 2018.

Acknowledgement. We thank Edson Lucas for drawing Figure 1.

https://homepages.cwi.nl/~manegold/DBDM/DBexperimentsTutorial-1x1.pdf
https://homepages.cwi.nl/~manegold/DBDM/DBexperimentsTutorial-1x1.pdf

	Introduction & Title
	Tutorial presenters
	Outline
	Mode of Delivery
	Length
	Target Audience
	Prior Offerings
	References

