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ABSTRACT
In the architecture of data-intensive applications, the database is a
suspected dependencymagnet: modifications of the database schema
are believed to substantially impact the remaining application code,
albeit often based on qualitative evidence. In related contexts, changes
with impact on large portions of the code base are known as rip-
ple effects. In this paper, we aim at understanding the impact of
hidden, database-induced dependencies and their ripple effects. As
we show, such dependencies largely elude established analysis ap-
proaches, in particular, co-change analysis. Instead, we propose a
semantically enriched generalisation of co-change dependencies
that allows us to capture long-range dependencies spread across
multiple commits. We also investigate a related set of usually hid-
den dependencies that stems from support for several database-
vendor-specific schemas, which can be handled and understood
with our approach. The induced couplings add further complexity
to the well-explored couplings between a (single-vendor) database
schema and the application code.

We present techniques built on a-priori expert knowledge that
allow for an automatic identification of database related code chan-
ges with high precision and recall. We demonstrate that this type
of change is very common in real-world applications, yet lacks at-
tention in software engineering and architecture. We apply and
evaluate the techniques on eight real-world data-intensive applica-
tions ranging from content management systems to domain name
servers. Our insights can serve as a basis for better tool support for
professional software development and maintenance, and to im-
prove software architectures for cross-functional concerns at the
intersection of database and software engineering.
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1 INTRODUCTION
Processing data is a core endeavour of computer science and in-
formation technology. With software as driving force of computer
systems, and databases at the heart of data storage, one would as-
sume that software engineering and database research were two
closely intertwined fields that produce coordinated research in-
sights. Databases are, at least within their own research commu-
nity [64], believed to be “dependency magnets” in software archi-
tectures. Handling dependencies between artefacts and components,
on the other hand, is a long and well researched topic in software
engineering [44]. However, previous work has neglected to suffi-
ciently appreciate the connection and its implications, as we argue
in this paper.

Relational database management systems (RDBMS) form an ex-
tremely successful and widely deployed class of databases. They
use schemas, typically described in the data definition (sub)lan-
guage (DDL) of SQL [52], to define the logical and physical lay-
out of data storage, and interact via various interfaces with appli-
cations that process and use data stored in the RDMBS. Software
changes are caused by changing requirements and evolving fea-
tures [43], and the same holds for the database component (e.g.,
data formats [39]), and notably, its schema [3, 4, 18, 22, 39, 50, 60,
61, 63, 64, 67]. Collateral evolution of the database schema and the
application code is a known challenge, and has been studied in the
past [15, 39, 50]. Analysis of couplings and dependencies are key to
understanding structure and evolution of software. Unfortunately,
as we demonstrate, common mechanisms for detecting couplings
and implicit dependencies do not apply well to reveal relationships
between database schemas and application code.

Nonetheless, changes to databases are known to cause substan-
tialmaintenance effort [16, 39]:When the underlying database sche-
ma changes, queries and their result structures change [18], which
in turn can require comprehensive code changes. Unfortunately,
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abstraction layers like object-relationalmappers (ORM) are no pana-
cea, as the database is known to nevertheless inject dependencies
throughout the code base [33]. Code that depends on a database
schema has to co-evolve with it, one way or another.

In this work, we construct methods to automatically identify
couplings between the database, in particular the database schema,
and dependent code. Our methods alleviate the need for analyses
to assume that coupled changes happen in a single commit. In-
stead, they use a novel application of a-priori information to obtain
semantic information across commits. We use these techniques
to show that the influence of databases on software architectures
has not yet been fully understood, possibly because it concerns
uncharted territory between software and database engineering.
Moreover, we show that database-induced dependencies are more
pronounced than previously recognised, especially in two aspects:

(a) Long-range DB/code dependencies. Changes that relate a
modification to a database schema, along with the necessary code
adaption, are assumed to be performed in a single commit in tra-
ditional co-change analysis. We empirically find that this concen-
tration is not upheld by many projects. Rather, we find that co-
changesmay be temporally distributed over series of commits, lead-
ing to what we call long-range couplings.

(b) Dependencies between schema variants. Often, large-
scale data-centric applications such as MediaWiki, Roundcube, or
Joomla!, supportmultiple database backends that must be handled
and maintained in code, and of which only one can be chosen for
deployment. Often, the different database backends are used to im-
plement the same, or at least very similar, functionalities.

The development team must maintain vendor-specific schemas
that remain synchronised with each other: Any changes to the con-
ceptual schema underlying the application must be transferred to
all vendor schemas. Moreover, developers need to maintain varia-
tions of the database population and migration scripts (e.g., for up-
grading the production database from one version of the schema to
another), and must cope with variant-specific code within a data-
base access layer (DBAL) or other parts of the application.
Hypotheses. The overall question we address is as follows:

What is the influence of hidden, database-induced de-
pendencies and their ripple effects on software develop-
ment and architecture?

Before we refine this question into specific research hypotheses
that address different aspects of the general problem, let us outline
our overall results and contributions:
(1) We show that databases introduce dependencies between en-

gineering artefacts that are not reliably captured by standard
techniques. In particular, we identifymultivariate vendor/vendor
dependencies by including domain-specific a-priori knowledge,
and introduce an automated analysis that lifts restrictions of
previous approaches by including semantic meaning of com-
mits into co-change techniques. The method is validated with
a ground truth obtained by multiple human classifiers.

(2) We show that an extension of our mechanism to long-range
couplings substantially increases the number of successfully
detected co-changes, and that standard coupling analysismech-
anisms do not faithfully capture important aspects of such data-
base-induced dependencies.

Figure 1: DB-induced couplings along the commit history (t):
sql-files (s) andDB-code changes (c), within in the same com-
mit, are captured by traditional co-change analysis. Long-
ranging code-changes, spanning several commits, require
new approaches. Multivariate DB-applications, with several
vendor-specific schemas, add additional complexity that
must be accounted for by analyses.

(3) We likewise extend the vendor/vendor mechanism to long-ran-
ge couplings, and find that this likewise addresses a neglected,
but practically relevant scenario that identifies further database-
related dependencies. This is especially important for the fu-
ture design of tools to handle schema evolution. The database
research community has mainly focused on proposing tools to
support the operations team in managing different schema ver-
sions (e.g., [17, 19, 31, 47, 65]). Yet for the family of applications
considered here, there is only one specific database product
running in production. Thus, these tools do not address the
problem of multivariate vendor/vendor evolution, as faced by
the software development team.
Our results were obtained by two redundant and independently

built analysis pipelines.We thus provide our own replication study.
The complete source codes for both analysis pipelines, including
input data and generated artefacts, is available as a reproduction
package on the supplementarywebsite (clickable hyperlink in PDF).
The website also contains detail results omitted here.

Structure.Beforewe address our hypotheses, we review related
work in the context of our efforts in Section 2. We describe and
formalise our approach in Section 3, where we also take care to
ascertain methodological soundness using a statistical analysis.

2 RELATEDWORK
Our work lies at the intersection of software engineering and data-
base research, and mandates reviewing related work from both
communities. Since we find that database issues have not reached
the full consideration they deserve in software engineering, we
particularly try to provide a thorough review of this aspect.

2.1 Dependency and Coupling Mechanisms
Countless mechanisms have been proposed for detecting depen-
dencies between software artefacts; we refer to Ref. [44] and refer-
ences therein for a comprehensive introduction. Our work concen-
trates on semantic co-changes to software artefacts. Co-change (or
evolutionary dependency) analysis [36, 66] is built on the premise
that artefacts are coupled when they (frequently) change together
in a single commit. Database schema changes are sometimes fil-
tered out by tools as non-programming language artefacts. But
even if they are captured by a co-change implementation, their
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small occurrence frequency, caused by their disruptiveness [50]
and inherent complexity, increases their impact to a few rare, but
the more invasive changes [64]–developers try to actively avoid
or delay [60, 62] schema changes at all costs. This rarity makes
it easy to underappreciate their significance compared to regular,
frequent code co-changes.

The restriction of dependency inference to single commits is
lifted by association rule mining [68] or semantic couplings [34, 49,
55]. In addition to the rare occurrence of schema changes as such,
schemas are also known to be sparsely documented [40], which
renders such data-intensive analyses impractical.

Static dependencies [10] such as obtained from function calls do
not capture database schemas by design, since these do not con-
stitute programming language code implementing concepts like
function calls int the first pace.1

We find that database schema changes do transcend the imme-
diate temporal vicinity of the sql-file commit. So far, there are few
established methods for analysing couplings across several com-
mits (incomplete commits) [44], although observations about ripple
effects [8, 69] go back to at least 1978.

Another important aspect relates to identifying the semantics
of a change. Semantic couplings break ground in this direction, al-
beit based on machine learning techniques, and without prescribed
semantic notions. Classifying commits by content [32, 56] is re-
lated to our approach, albeit different classification categories are
used (e.g., bug fix, enhancement, documentation update), usually
learned from a textual representation of the change, instead of us-
ing classifiers constructed from a-priori expert knowledge.

Popular tools in software engineering research, including Scikit’s
understand [2] or Lizard [41] (used by GrimoireLab [23]), do not
support SQL, and cannot detect schema related couplings irrespec-
tive of lags. Research that considers file-level artefacts does not
need to parse the content of SQL schema files (and can therefore
easily support sql-files). However, Refs. [13, 35] show that depen-
dencies obtained on simultaneous changes to localised regions/func-
tions, or even lines [59] are more reliable than the mere fact that
developers worked on the same file, although few studies have
adopted such fine-grained approaches [29] so far. Our approach
rests on function-level decomposition wherever possible.

2.2 Databases and Software Engineering
It is a widely used assumption in the database community that
databases are a major source of dependencies in software engi-
neering [64]. In fact, the seminal specialist book [4] by Ambler
and Sadalage emphasises the challenge of evolving database appli-
cations given these dependencies.

Nevertheless, the seminal textbooks on software patterns, Refs. [11,
12, 26], spend surprisingly little attention on databases. Essentially,
they concentrate on the use of a database access layer and some se-
lected techniques to decouple database structure and applications.
In a more recent textbook, Fowler [25] argues in favour of a small
number of recommended patterns for DB applications; the seminal
textbook on software architecture by Bass et al. [6] only dedicates a

1Of course, most relational SQL-based databases offer stored procedures and similar
mechanisms, but these extensions do not touch the structural properties of schemas.

few pages on how to integrate databases in software architectures,
essentially advocating a database access layer.

Additionally, all references restrict their consideration to single-
vendor schemas. That is, it is assumed that the application is backed
by a specific database, for instance, PostgreSQL. However, many
extremely popular applications support multiple alternative data-
base backends in development (we call such applicationsmultivari-
ate), but only use one DB-variant in deployment, which is closely
related in spirit to configurable software product lines [5]. Rosen-
müller et al. [54] study tailor-made, problem-specific SQL dialects
generated from a family of SQL dialects, which is also related to
the problem of handling different vendor-specific SQL dialectes.
In general, the problem of multivariate database applications has
only recently started to gain attention in the software and data-
base engineering communities. Vassiliadis et al. [62] conduct the so
far largest-scale schema evolution analysis (over 195 applications).
The authors report on the difficulty of multi-variate DB applica-
tions during data collection, and ultimately, resort to analysing the
schema of one vendor only. First suggestions for tool-based han-
dling of multi-variate database architectures appear in Ref. [57]

Nevertheless, prior work on database aspects of software engi-
neering—with the notable exception of Qiu et al. [50]—usually ig-
nores the role of the commit history, and in particular, the time
frame that needs to be considered for analysing the implications
of a commit. While Qiu et al. focus on the schema changes in
a single-vendor scenario (even for repositories that actually are
multi-variate), we consider the problem in its full generality.

Interestingly, it has also been shown that object-relational map-
per frameworks such as Hibernate do not prevent dependencies
between the database and the application code [33, 45].

Delplanque et al. study the evolution of a database application in
production [20]. The team quantifies the substantial efforts caused
by schema evolution, and confirms other studies, decades prior [60].

Coupling between databases and application code is often made
more visibly with schema evolution, and manifests in a recognised
maintenance challenge. The earliest mentions we are aware of date
back several decades [60]. Ref. [21] describes a framework for evolv-
ing multi-database (which is not entirely identical with our sce-
nario, but refers to multiple simultaneous databases in production)
applications based on CORBA, and evaluate their framework on an
artificial prototype of such an application. Based on a similar no-
tion of coupling as our work, Gardikiotis et al. [27] estimate the im-
pact of schema changes on a web application. Follow-up work [28]
proposes a more general impact analysis of schema changes on ap-
plication code, based on an extended version of the program con-
trol flow graph, and relying on program slicing. The approach is
evaluated using a fictional application, which does not include real-
world commit cultures that we find essential in our study. Maule et
al. [42] analyse schema changes on 62 revisions of a single commer-
cial system, and identify locations in the source code that might be
affected by the change using code flow analysis.

It has been shown that evenwhen persistence frameworks (ORM
mappers) are used, there are still pronounced dependencies be-
tween the database and the application code, including test cases [33].

In essence, we find that the amount of scientific literature on the
intersection of software and database engineering is comparatively
meagre, given the long individual history of both fields. We also
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sense a large gap between state-of-the-art approaches propagated
in research, and the tools actually used in practice (e.g. observed
in a real-live study in [20], and as a general observation in [37]).

2.3 Database Evolution
Schema evolution itself is an intensively studied topic in the data-
base community. Schema changes are commonly called schema
modification operations (SMOs) [18]. Ambler et al. propose a classi-
fication of SMOs [4], which has also been applied in research [50].
Ambler lists SMOs that concern the logical schema (i.e., creating or
dropping a table, adding/dropping a column), and SMOs that con-
cern the physical schema (i.e., adding or dropping an index). One of
the strongest selling points in using database systems is that they
distinguish a logical and a physical schema. Thanks to the desir-
able property of data independence [52], the physical schema may
be changed without affecting the logical schema, or the applica-
tion code. Studies have shown that SMOs concerning the physical
schema are comparatively rare [50] for the majority of projects.

Existing schema evolution research mostly focuses on an empir-
ical understanding of the frequency and nature of schema changes
(e.g. [9, 18, 22, 39, 50, 60, 61, 63, 64, 67]), and usually ignores con-
sequences for the code. Among the few exceptions, Qiu et al. [50]
assume a more holistic point of view, and Curino et al. [18] study
the impact of schema changes on queries embedded in the appli-
cation code. Neamtiu et al. [39] study coupling between database
schema and migration scripts for migrating production data be-
tween schema versions. In particular, they identify vendor-side
changes (e.g., the database file format) as disruptive to applications.

Overall, empirical studies confirm that the schema evolves, and
that couplings between database and code causemaintenance over-
head. Nevertheless, there is little quantitative evidence further char-
acterising these dependencies, as we set out to provide.

3 RESEARCH DESIGN
3.1 Reference Projects
We analyse a diverse set of eight subject projects, from content
management systems to a DNS nameserver; Table 1 states key char-
acteristics like total number of general, schema, or database-related
commits, lines of code, etc., and shows that we selected projects
that vary in a number of important dimensions: (a) size (from 10k
to 500k LoC); (b) age (time since first commit; ten to twenty years);
(c) programming language (C++, PHP, Java); (d) application do-
main; (e) support for at least three different database vendors.

While our selection does not (and cannot) guarantee results that
fully generalise to every database centric application, it should
represent many typical choices. Moreover, most subject projects
have already been subjected to published empirical study [50, 67],
or even serve as a widely used schema evolution benchmark [18].
Thus, we cover de-facto reference projects in the analysis of evolv-
ing database applications, and have also tried to ascertain that the
subject projects represent practically successful database applica-
tions that enjoy popularity in the open source communities.

3.2 Analysis Process
One of our main tasks is to identify database-related artefacts in
repositories. Typical choices for artefacts in repository mining re-
search use either complete files, or resort to a more fine-grained
decomposition of the source code into functions. An analysis of
co-changes based on function artefacts is known to deliver consid-
erably better results [35]. Therefore, our analysis operates at the
function artefact level. We use established repository mining and
analysis tools [35] to decompose source files into artefacts.

Built-in replication study. We applied due diligence in our
data analysis. Results were obtained through two analyses, with dif-
ferent, independently written analysis pipelines. The second anal-
ysis was able to reproduce the results of the first (except for some
negligible differences in the sub percent range). The supplemen-
tary website describes both pipelines, compares the results, and
provides full sources for independent reproduction.

Commit Classification byWitnesses.We implement witness
functions to categorise artefacts as database related or not. Based
on a-priori knowledge and a manual analysis of the database APIs
and other abstraction mechanisms (or even SQL keywords embed-
ded in command strings, should projects use such techniques), we
compiled lists of project-specific keywords (available on the sup-
plementary website) that mark artefacts as database related when
their content matches a keyword. We use two types of witnesses:

(1) A database code witness identifies general programming lan-
guage code that performs an operation related to database is-
sues. At the level of function artefacts, this might check for
calls to variables named after project-specific conventions, e.g.
“$dbr->” for the database connection in PHP, or API calls such
as “wfGetDB(”, forMediaWiki. A filemay contain artefacts that
are related to databases, and others that are not.
It is also possible to specify file-level database code witnesses
that identify all artefacts in a file as database related, either
based on content string matching, or pathnamematching. This
is useful to compactly classify files that implement, for instance,
a database access layer. An example for Joomla! is the file reach-
able by the path installation/helper/database.php.

(2) A vendor witness checks for sql-files that contain DDL (data
definition language) statements, as well as DML (data manip-
ulation language) and rights management statements. Recog-
nition for this witness is at the file level, and can often be per-
formed by checking for certain file extensions (.sql) or rela-
tive base file paths in the repository.
We experiment with two implementations: (a) The first recog-
nises any change to a sql-file, and (b) the second recognises a
change to the subset of files where the main database schema
is declared (this is identified by applying a-priori knowledge).
In particular, the files recognised by implementation (a) addi-
tionally contain files that are used by the operations team to
migrate production data to the current schema (via ALTER TA-
BLE statements). Unless stated otherwise, we rely on imple-
mentation (a), but we will also explore whether there are sig-
nificant differences by this more coarse-grained approach.

Implementation details and exactwitness specifications are avail-
able in the replication package on the supplementary website.
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Table 1: Overview of the investigated projects (PDF provides clickable links for repository names and hashes). #DBs: number
of supported vendors; #Cmts: number of commits; #DB-C: number of multivariate sql-file commits.

Project Description Time Range #DBs #Cmts #Schema #DB-C Hash Lines Of Code (@Hash)

Schema DB-C Non-DB

BiblioteQ Library Mgmt 03/08 ∼ 05/20 3 2.817 162 58 97b46e1 2.815 40.239 246.150
Joomla! CMS 09/05 ∼ 05/20 3 32.230 1.590 377 be05a58 25.893 266.912 891.588
MediaWiki Wiki 01/02 ∼ 05/20 6 96.624 1.121 151 02d827e 14.990 263.606 1.834.769
OSCAR EMR Medical SW 11/02 ∼ 05/20 3 22.693 1.678 13 0aabdfd 343.791 523.623 1.610.974
phpBB Bulletin Board 02/01 ∼ 05/20 7 34.425 1.442 343 2bf9202 8.873 182.491 267.404
PowerDNS Nameserver 11/02 ∼ 05/20 8 19.017 111 32 628cefe 1.114 13.283 545.410
Roundcube Webmail 09/05 ∼ 05/20 5 11.730 148 70 46d3cae 3.154 23.148 280.777
TYPO3 CMS 10/03 ∼ 05/20 5 29.606 550 13 4c6d801 1.724 308.373 965.438

Intuitively, a witness checks if a commit satisfies a certain prop-
erty. We are interested in four discernible properties as shown in
the table right below. Therefore, we solve a multi-class classifica-
tion problem that assigns a commit into one of these categories
“S” refers to a sql-file, “DBC” to database related code; ✓ signifies
presence, and ✗ absence of such a change in a commit.

Class S DBC

0 ✗ ✗

1 ✗ ✓

2 ✓ ✗

3 ✓ ✓

Differently from the seminal work
of Qiu et al. [50], which relies on
manual analysis of co-committed code
and assumes all dependencies between
schema and related code are resolved
within single commits, we fully auto-
mate our classification and can scale to
any number of commits for arbitrary lags, based on a project spe-
cific set of witness functions that needs to be provided by human
experts. Compared to a general manual analysis of commits, this
is a one-time up-front investment whose effort is independent of
the number of analysed commits. In a first step, two of the authors
have devised and refined automatic classifiers based on a-priori,
expert knowledge, and manual inspection of the subject projects.

Formalisation. Tomake our scenario precise, let us commence
with a formal description. We assume basic familiarity with vec-
tor norms, specifically, the family of 𝑝 norms defined by ∥ ®𝑥 ∥𝑝 =(∑

𝑖∈N ∥𝑥𝑖 ∥𝑝
)1/𝑝 , where the special cases 1 and ∞ used in this pa-

per reduce to ∥ ®𝑥 ∥1 =
∑
𝑖 |𝑥𝑖 |, and to ∥ ®𝑥 ∥∞ = max( |𝑥1 |, . . . , |𝑥𝑛 |).

Consider a repository whose commits have been linearised into
a sequence of totally ordered commits ®𝐶 = (𝑐1, 𝑐2, . . . , 𝑐𝑁 )T ∈ 𝐻𝑁

in the usual way (see, e.g., Refs. [7, 35]). Each commit is charac-
terised by a tuple (ℎ, 𝑡a, 𝑡c,𝑚, {𝑓1, . . . , 𝑓𝑛}) ∈ 𝐻 , where ℎ is a unique
hash value, 𝑡a and 𝑡c denote author and committer timestamps,𝑚
is the commit message, and {𝑓𝑖 } the set of all changes induced
by the commit, grouped by file.2 We denote the number of (non-
merge) commits in the repository under consideration by 𝑁 . The
total ordering guarantees that 𝑡 (𝑐1) ≤ 𝑡 (𝑐2) ≤ · · · ≤ 𝑡 (𝑐𝑁 ), where
𝑡 : 𝐻 → N extracts committer time 𝑡c out of a commit.

We infer properties of a commit using a witness function

𝑊 : 𝐻 → F2

2When multiple hunks for a single file are present in a commit, we count these as one
combined change to a file. The layout of how a commit is presented in git differs from
our exposition, because this is not relevant for the analysis.

that maps a commit 𝑐 ∈ 𝐻 to a Boolean value, indicating presence
or absence of a property. For instance, we may use a witness to
indicate whether a commit contains a change to any schema file or
not; another witness decides whether a commit contains a change
to database-related code.

We group related witnesses in vectors (𝑤1,𝑤2, . . . ,𝑤𝑘 )T. Since
we are interested in detecting properties of a given time interval,
that is, sub-sequences of ®𝐶 , we define a lag operator with signature

𝐿̂
𝑝

𝑖,𝑗
: (𝐻 → F2)𝑘 × 𝐻𝑁 → N0,

where 𝑖, 𝑗 ∈ N and 𝑝 ∈ {1,∞}. Givenwitnesses ®𝑤 = (𝑤1,𝑤2, . . . ,𝑤𝑘 )T,
and a sequence of commits in ®𝐶 , the operator applies as

𝐿̂
𝑝

𝑖,𝑗
®𝑤 ®𝐶 =






𝑖+𝑗∨
𝑛=𝑖

®𝑤 𝑐𝑛







𝑝

Example. Intuitively, the lag operator computes a collective
property for an interval of commits. The application of witnesses
to a commit, denoted by ®𝑤𝑐𝑛 , results in the vector

(𝑤1 (𝑐𝑛),𝑤2 (𝑐𝑛), . . . ,𝑤𝑘 (𝑐𝑛))T ∈ F𝑘2 .

Depending on the choice of 𝑝 , either sum (0) or maximum (∞)
norm are used. Intuitively, for 𝑝 = ∞, the operator checks exis-
tence of the witnessed property in commit range [𝑖, 𝑖 + 𝑗], whereas
for 𝑝 = 1, the operator counts how often a property is satisfied.

Fig. 2, shows three commits (labelled 7-9), together with the files
changed in each commit. We visually distinguish sql-files and DB-
relevant code changes. In the figure, we show the result of applying
he vendor witnesses ®𝑤𝑣 to the commits, to register when sql-files
for the vendors MySQL, DB2, or PostgreSQL are changed.

We further show the application of the DB-code witnesses ®𝑤𝑑𝑏𝑐

to the commit history, to track whether any DB-relevant code was
changed in a commit, and how this code was recognised (on a per-
file basis, or by detecting DB-specific API keywords).

We then compute the lag operators, as shown in the table to the
right. This table reads as follows.We focus on commit 7 as our start-
ing point. This is a schema-commit, as the file mysql.sql changes.
Let us consider the vendor witnesses first, and focus on the second
column: With a lag of 0, we only encounter a univariate schema
change. Extending the lag to 1 and 2, we observe a multivariate
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Figure 2: A linearised git commit history, and the applica-
tion of witness vectors (pgSQL = PostgreSQL).

commit (with the lag operator capturing two changed schemas).
For lags 0-2, there is at least one schema change (third column).

We focus on the database code witnesses next. Already with
lag 0, we encounter a coupled DB-code change (fifth column).

Thus, the lag operator allows us to track whether database re-
lated code is encountered, and how many vendors are witnessed,
within a given window.

®𝑤 = ®𝑤v ®𝑤 = ®𝑤dbc
𝑝 1 ∞ 1 ∞

𝐿̂
𝑝

7,0 ®𝑤 ®𝐶 1 1 1 1
𝐿̂
𝑝

7,1 ®𝑤 ®𝐶 2 1 1 1
𝐿̂
𝑝

7,2 ®𝑤 ®𝐶 2 1 2 1

We focus on the data-
base code witnesses next.
Already with lag 0, we
encounter a coupled DB-
code change (fifth column).

Thus, the lag operator
allows us to track whether
database related code is encountered, and how many vendors are
witnessed, within a given window.

Quality Analysis. To verify the quality of our classification
mechanism–following the recommendations by Reyes et al. [53]
for software engineering research–, we use a random sample of 20
commits per project, uniformly and randomly sampled from the
four classes, as decided by the automatic classifier. This results in
160 commits (which is comparable to the sample of 146 commits of
Ref. [50]) subjected to an independent, manual classification by all
four authors,without up-front consultation of the automatic classi-
fier results. Decisions were based on content of the commit and the
complete textual content of the artefacts modified by each commit.
A custom UI tool was used to minimise manual glitches; discrep-
ancies were resolved by consensus. Table 2 shows the resulting
multi-class confusion matrix [30].

We achieve an overall accuracy of 88.75%, and the 95% confi-
dence interval spans [82,8%, 93.2%], as computed by the methods
provided by Refs. [38, 48, 51]. Precision, recall and F1-score by class
are provided in Table 2; larger values can hardly be expected for

Table 2: (Left, grey background) Multi-class confusion ma-
trix for database code witnesses, and related statistical char-
acteristics of the classifier. (Right) Class-resolved statistical
characteristics. Classes (0)–(3) as defined in the main text.

Ground Truth (Reference)
0 1 2 3 Prec. Recall F1

Pr
ed
ic
tio

n 0 23.1% 5.6% 0.0% 0.0% 80% 93% 86%
1 1.9% 19.3% 0.0% 0.0% 91% 78% 84%
2 0.0% 0.0% 21.3% 0.0% 100% 85% 92%
3 0.0% 0.0% 3.8% 25.0% 87% 100% 93%

statistical processing of information involving human participa-
tion [46]. Typical values for precision and recall range around 85%,
which compares not unfavourably to current state-of-the-art of
72% recall as reported in Ref. [50] for database co-change detection.
We explicitly note, however, that method and evaluation differ be-
tween op. cit. and our work, which prevents an entirely straight-
forward comparison.

Consequently, we argue that our analysis method and pipeline
provide an apt basis to derive sound statistical conclusions from
real-world software engineering data.

3.3 Evolution scenarios
Figure 3 illustrates possible temporal evolution scenarios. Scena-
rio (a) shows a linear commit history with a univariate sql-file
change 𝑠1 not accompanied by coupled code changes, neither di-
rectly in the same commit, nor in later commits. Most previous
empirical studies on schema evolution [18, 22, 50, 60, 61, 64, 67] re-
volve around capturing nature and frequency of schema changes,
assuming this simple scenario.

However, more disruptive schema modifications necessitate al-
tering DB-relevant code. Scenario (b) shows a possible approach,
where sql-file change (𝑠1) and the coupled code change (𝑐1) are
committed together. Scenario (c) generalises to multivariate DB
applications. Related changes to sql-files for different vendors are
combined in a single commit, together with relevant code changes.
This strategy is present in the subject projects, although real devel-
oper behaviour often leans more towards scenario (d). It shows
how a sql-file change can be temporally decoupled from related
code changes: One code change happens in the same commit (lag
0), another one is delayed until two commits after (lag 2).

Scenario (e) is the most general case. sql-files for two ven-
dors and dependent code change in different commits on different
branches, which eventually merge with a common ancestor. Lin-
earising commits [35, 70]) creates a well-defined temporal order
(dashed commits), and induces a vendor/vendor co-change struc-
ture (e.g., commits 0+4, counting from the left) as well as sql-
file/code couplings (e.g., commits 0+3, or 2+3).

4 HYPOTHESIS 1
We now target our first hypothesis: Database induced depen-
dencies between artefacts can be automatically revealed by
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Figure 3: Different commit strategies (circle: commit). (a) Un-
coupled univariate sql-file change; (b) univariate sql-file
change coupled with a database code change in the same
commit; (c) multivariate schema changes (sql-file/DBcode
and vendor/vendor coupling in one commit); (d) univariate
scenario with lag 0+2 sql-file/DB code couplings; (e) coupled
changes with separate branches for two vendors.

semantically-enriched co-change analysis. So far, existing ef-
forts [50] for coupling analysis between sql-files and the applica-
tion code rely heavily on manual analysis to recognise DB-related
code. Moreover, existing approaches ignore multivariate sql-files,
even when the applications studied are multivariate.

We next quantify the couplings identified byDB-aware coupling
analysis, focusing at one commit at-a-time. This allows us to dis-
tinguish the scenarios (a) through (c) from Figure 3.

Witness result distribution. sql-files may happen to be ig-
nored in coupling analysis that is based on co-changes when they
are not classified as programming language code. To estimate their
possible effects in co-change approaches based on single commits,
observe the distribution of commit content shown in Fig. 4: For
each project, we classify commits into four groups, dependingwhe-
ther or not the commit affects a sql-file, and whether or not it con-
tains DB-related code. Here, we consider all sql-files, and we will
explore the effect of focusing only on those sql-files that contain
the main schema declaration in our exploration of Hypothesis 2.

sql-files coupled with database related code are the most infre-
quent combination for most projects–changes to sql-files are usu-
ally not accompanied by database code changes, at least not within
the same commit. More importantly, they are dominated by data-
base code changes. In frequency-based evaluations of co-changes,
the possible impact of sql-files is therefore substantially limited,
and traditional coupling analysis is likely to regard them as “noise”.

Database related code changes typically comprise 30%–40% of
commits. Analyseswithout information on change semantics (data-
base vs. non-database) are unable to capture this property: A con-
siderable share of commits involves changes to one particular ar-
chitectural element of the software stack, namely the database. We
are not aware that this observation is reflected in previous work.

We conclude that the share of sql-files is essentially negligi-
ble on the single-commit level, yet considerable effort is spent on
database-related changes for all subject projects. This is even visi-
ble in a simple analysis that utilises a window of size 1 (i.e., lag 0).

Detected couplings. We next examine the dependencies ob-
servable for sql-files in more detail. Consider Table 3. For each
project, we list the probability of a DB-related code change in the
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Figure 4: Distribution of change types in individual com-
mits. Changes can affect sql-files or non-sql-files, and mod-
ify code related or not related to databases. Four combina-
tions of colour and pattern are possible.

Table 3: Given a sql-file change: Probability of co-change
within the same commit (lag 0) for DB-related code (S/DBC),
and a sql-file for an alternative vendor (V/V).

Project S/DBC V/V Project S/DBC V/V

BiblioteQ 50% 36% Joomla! 26% 24%
MediaWiki 40% 13% OSCAR EMR 28% 1%
phpBB 47% 24% PowerDNS 18% 29%
Roundcube 32% 47% TYPO3 47% 2%

same commit (S/DBC). We further list the probability of a sql-file
change for at least one other vendor within the same commit (V/V).

For the column labeled “S/DBC”, we are able to reproduce the
core results from Qiu et al. [50] (within reason), who showed that
in approx. 50% of all commits changing sql-files, we find DB-rele-
vant code. We deem this a relevant contribution: (1) while both
studies have an overlap in the analysed projects, there are differ-
ences, so the results are robust and generalisable. Further, (2) the re-
sults of Qiu et al. heavily rely on manual code inspection, allowing
only for 100 commitswith schema changes to be analysed, whereas
we have analysed a total of over 6.8k changes to sql-files.

Regarding the probability of a co-change with the sql-file of an
alternative vendor, we can observe that it is consistently lower (per
project) than for DB-code. Notably, the probability is close to zero
for OSCAR EMR and TYPO3. We provide an explanation as part of
our discussion in Section 8.

Conclusion. sql-file changes are comparatively rare. This cre-
ates a bias for traditional code coupling analysis, whichmay regard
database-induced dependencies as mere noise. Moreover, code cou-
pling analysis must be made DB-aware, both in recognising sql-
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files as relevant sources of dependencies, and in recognising DB-
related code. We can confirm earlier results on DB-related code
coupled with sql-files in the same commit, based on an automated
classification, and a data pool larger by orders of magnitude.

Moreover, we have identified a so far unexplored class of data-
base-induced dependencies that are specific to multivariate appli-
cations. These dependencies are less pronounced in comparison,
but nevertheless significant. Thus, we can confirm Hypothesis 1.

5 HYPOTHESIS 2
We now challenge traditional coupling analysis based on relating
changes within single commits. We hypothesise that dependen-
cies between sql-files anddatabase related code predominantly
manifest themselves as long-range ripple effects.

For each commit 𝑛 containing a sql-file, we compute the lag
operator 𝐿̂∞

𝑛,𝑙
®𝑤𝑑𝑏𝑐

®𝐶 for all lags 𝑙 ∈ [0, 20]. For each 𝑙 , and resolved
by project, Figure 5 plots the probability that a schema change is
accompanied by database relevant code change within lag [0, 𝑙]
(naturally, all curves are monotonically increasing, as lag 𝑘 +1 sub-
sumes lag 𝑘 , when counting from the same commit 𝑛). Different
from H1, we now study lags greater than zero, and thus, a larger
window of commits. Scenarios (d) and (e) in Fig. 3 represent typical
situations relevant for this hypothesis.

We need to address one possible source of noise, namely the in-
fluence of sql-files that are only relevant for the operations, not
the development team. Fig. 5 contains two curves for the projects
that distinguish between these two types of sql-files: One repre-
sent a calculation that only considers all sql-files, while the other
is restricted to main sql-files. A green line visualises the point-
wise difference. Especially for the lower lags, we observe absolute
differences of roughly 10%. The overall shape of the curves is inde-
pendent of the measurement variant in good approximation, and
the differences quickly vanish for higher lags.3 This indicates that
it is sufficient to consider all changes to sql-files without prior
filtering (and even more importantly, without leveraging a-priori
knowledge which sql-files declare the main database schema).

Secondly, consider how the probability of observing a co-change
varies with increasing lag. Joomla!, MediaWiki, and OSCAR EMR
start with 25% for lag 0, and rise to around 75% at lag 5. BiblioteQ,
phpBB, and Typo3 start off slightly higher ground at 50% probabil-
ity, but rise to more than 90% at lag 5. Nearly all subject projects
reach almost 100% probability at lag 10. This means that estab-
lished co-change dependency techniques that only consider lag 0
can miss the existence of co-changes by a factor of two to three
probability-wise, and lose important structural information.

PowerDNS and RoundCube are apparent outliers. Manual in-
spection of the project commit histories reveals schema changes
that correspond to scenario (a) from Fig. 3 and do not inject depen-
dencies into the application code. Both projects frequently change
indexes (this observation is quantitatively confirmed in Ref. [50]
for Roundcube). As discussed in Section 2.3, such changes do not
require updates in the application code because they concern only

3We remark that the observation of larger co-change probabilities for main sql-files is
consistent with a DevOps approach: Main sql-file changes occur in the “Dev” phase,
whereas incremental changes address modifications to already deployed database in-
stances, and relate to the “Ops” phase, with less need for code changes because the
actual development has already taken place in the “Dev” phase.

the physical, not the logical schema.4 In contrast, logical changes
such as renaming, adding, or deleting columns can be expected to
be more disruptive, as we observe for the other subject projects.

Conclusion.Our analysis shows that considering non-zero lags
is required for all projects, if we are to reliably capture changes
to sql-files along with DB-relevant code changes. Traditional co-
change analysis techniques, which are based on single commits,
will not faithfully recover all existing couplings between sql-files
and database code, due to the long-term ripple effects caused.

Again, we can confirm our hypothesis, which can be seen as
quantitative confirmation of database engineering folklore of the
database as a dependency magnet [4, 64]. Highlighting the impor-
tance of changes spread across commits is possible because our
method allows us to provide of a semantic link between tempo-
rally remote commits.

6 HYPOTHESIS 3
We now explore the multivariate vendor/vendor couplings iden-
tified in Hypothesis 1, and how they behave with increasing lags.
Our hypothesis is thatdependencies caused bymultivariate ven-
dor/vendor couplings predominantly manifest themselves as
long-range ripple effects. This is related to the previous hypoth-
esis, but now addresses a different aspect of software variability.

For each commit 𝑛 containing a sql-file, we compute the lag
operator 𝐿̂1

𝑛,𝑙
®𝑤𝑣

®𝐶 for all lags 𝑙 ∈ [0, 20]. Unlike forHypothesis 2, we
compute 𝐿̂1 instead of 𝐿∞, because in a first step, we are interested
in learning how many sql-files associated with different database
vendors are encountered within a given window. In a second step,
we characterise a lag 𝑙 window as either multivariate (two or more
vendors), or as univariate (only one vendor throughout).5

Figure 6 visualises the results, by project: The total amount of
witnessed vendor-vendor couplings per lag 𝑙 is split into univari-
ate andmultivariate sql-file changes, and the relative fractions are
shown by yellow triangles (multivariate), and grey points (univari-
ate): For instance, 36% of all sql-file changes at lag 0 in BiblioteQ
address multiple database vendors, and 64% only concern a single
vendor (we list explicit values for lag 0 in Table 3). Standard co-
change analyses would therefore conclude that the univariate case
dominates the multivariate case. However, the distribution flips
when higher lags are taken into account; eventually, the relative
fraction of multivariate cases is about 2/3, where the univariate
changes only comprise every third schema change.

While the ratios between univariate and multivariate sql-file
changes varies among subject projects, all except OSCAR EMR and
Typo3 at least double the fraction of multivariate changes by lag 20.

Conclusion. Overall, we observe a distinct effect of long-range
multivariate couplings, yet not as influential as for H2. Regardless
of the specific fraction, multivariate sql-file changes are well rep-
resented in our sample of subject projects. As for H2, in general,
4This so-called data independence between the physical and logical schema is a highly
desirable feature of databases [52].
5The rationale rests on the consequence that multivariate modifications imply: When
themultivariate case must be frequently supported in a project, providing appropriate
tool assistance may be required. However, the decision to build or deploy an appropri-
ate tool does not depend on the fact how often a specific vendor is usually addressed
within an interval, but the fact that the multivariate case needs to be handled fre-
quently at all. Similar thinking applies to other scenarios that need to distinguish
between univariate and multivariate cases.
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Figure 5: Lag coupling analysis for H1. Each data point summarises the probability of at least one co-change of a sql-file and
database-related code within the given lag. Gray, round data points consider all sql-files. Ochre, triangle data points consider
only files where the main schema is declared. The difference between both variants (green, square) never exceeds 10%.

these results show that for most projects analysed, there is a mar-
ket for designing tools that assist with vendor/vendor couplings.

Apparently, we can group the subject projects: (1) For BiblioteQ
and RoundCube, the multivariate case exceeds the univariate case
within a few lag increments. (2) OSCAREMR andTYPO3 aremarked
outliers, with the univariate line consistently high, and the multi-
variate line consistently low. (3) In the remaining four projects, it
takes the multivariate line a lag of 20 or more to close in on the
univariate line. We discuss the implications in Section 8.

7 THREATS TO VALIDITY
This section discusses possible threats to validity, as well as our
counter-measures. Some generic threats common to repositorymin-
ing projects (such as implications of linearising a nonlinear commit
history, or relying on the correctness of underlying, widely used
tools), are shared with comparable studies (e.g., Refs. [35, 50, 70]),
and not discussed here.

Computation of DB-witnesses. The largest threat to valid-
ity is our automated computation of DB-witnesses, based on a-
priori knowledge of the folder structure, naming conventions, and
database-specific APIs. Yet as we show in our results for Hypoth-
esis 1, we were able to confirm that our approach is indeed sound
and robust. We thus deem this threat as only marginal.

Computing vendorwitnesses.Weconsider all changes in sql-
files for coupling analysis. In contrast, Qiu et al. [50] perform thor-
ough data cleaning to identify the valid schema changes (and to
ignore changes that merely pretty-print, or fix typos in comments,
etc.). Moreover, we do not distinguish between DDL changes (e.g.,
CREATETABLE statements) fromDML changes (e.g., INSERT INTO
statements). The latter populate the database with initial data, and
do not actually change the schema. Our motivation is that changes

to the initial data do affect the database component in the software,
and can very well have dependencies into the remaining applica-
tion code. As our overall theme is to study the database as a depen-
dency magnet, we deem this decision reasonable.

Despite a simpler data preparation phase, for lag-0, we are able
to reproduce the main result of Qiu et al., namely that for approx-
imately 50% of schema-changes, the DB-relevant, dependent code
is changed within the same commit. Thus, we regard the threat
imposed as acceptable.

Lag direction. We consider only lags equal to or greater than
zero, but never negative. This is a conscious choice: Empirical stud-
ies on the frequencies of schema modification operations [14, 50,
67]), agree that additions outweigh the removal of tables and co-
lumns by far. A column can be added to a sql-file before adapting
dependent code, without breaking the application.When a column
is removed, any references must be removed from the dependent
code before, otherwise the applicationwill break. Additions are cap-
tured by positive lags, removals require negative ones, with the
sql-file change as the anchor. Since additions outweigh deletions,
we consider this restriction fungible, given the simplicity gains.

Generalisability. One possible threat is that our results might
not generalise to projects other than those studied here. However,
we have chosen well-known database applications, most of which
are also featured in other studies on schema evolution. They cover
a certain range of use cases (from content management systems
to a DNS server), and involve different programming languages
(e.g., C++, Java, PHP). We are therefore confident that our analysis
indeed allows to derive generalisable conclusions.
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8 DISCUSSION
In this paper, we have tried to better understand the influence of
hidden, database-induced dependencies and their ripple effects on
software development and architecture. Our analysis confirms dif-
ferent types of dependencies induced by databases: Couplings be-
tween sql-files and database code, and couplings between sql-
files that represent essentially the same information about physi-
cal and logical schemas, but for different vendors.While the former
have received initial treatment in the scientific literature, but are
still underexplored, the latter are entirely unexplored to the best of
our knowledge. We found that both types of dependencies occur
frequently in large real-world systems, and cause dependency rip-
ples, whose consequences must be tackled by software developers.

For identifying the relationships, we find it instrumental to aug-
ment existing coupling analysis mechanisms with a domain spe-
cific semantic understanding. This allows us to include structural
properties beyond a pure textual level in the analysis. Typically,
a quarter of all commits in the subject projects perform database
related changes. This seems to underline the importance of going
from a purely factual level (“there exists a connection between A
and B”) in co-change analyses to an understanding of what a given
co-change is actually about.

As we have remarked in Section 2, there is comparatively little,
but long-standing research activity on the subject of schema evolu-
tion and the coupling between schemas and code in data-intensive
applications. This shows the ongoing interest in viable solutions.
Yet when the long-standing pattern recommendations on how to
decouple databases and applications are contrastedwith the strong
couplings identified in our work, this seems to indicate that best
practices such as introducing a database access layer do not suffice.
We find the problem does not yet receive the attention it deserves

from both an applied tool-centric point of view and from the per-
spective of research. Perhaps the involvement of two mostly dis-
joint communities plays a role. Nonetheless, with the growing in-
fluence of data science and the ability to routinely analyse huge
datasets, we expect that impact and importance of the problem
will increase in the future, and that software architectural solutions
that provide an effective decoupling are required. We identify two
promising strategies:

(1) Consciously weigh benefits of multivariate database support
against the increase in complexity and efforts (obviously, aware-
ness about the effective costs of multivariate database support
is a precondition, which we hope to raise with this paper). OS-
CAR EMR ended support for vendor Oracle in 2011, whichman-
ifests in near-to-no multivariate couplings in Figure 6.

(2) Introduce an appropriate abstraction layer in form of a schema
manager. This might seem closely related to database access
layers as recommended for decades, but is a different archi-
tectural pattern, where vendor-specific schemas are generated
from a common model, rather than synchronised manually. In
2016, TYPO3 introduced the Doctrine schema manager [1]. We
believe this explains why the behaviour in Figure 6 resembles
that of a univariate application.

We argue that the latter strategy should enter the curriculum of
software architecture and engineering textbooks, which currently
treat couplings between databases and application code only cur-
sorily. It is interesting to observe that relief came from a “Dev” tool,
closely related to ideas of product lines and generative software en-
gineering, while the database community has so farmostly focused
on “Ops” tools and approaches, as noted in the introduction.

The current surge of interest in NoSQL databases is fuelled by
the desire to eliminate the existence of fixed database schemas,
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which would also reduce dependencies between schema and data-
base code. Unfortunately, the approach works mostly for the “Ops”
team in DevOps scenarios, but provides only temporary relief for
developers because similar problems are known to eventually re-
surface, e.g. for NoSQL stores [58] or polystores [24].

All in all, we find that augmenting the established and proven
ideas of co-change dependency analysis with domain-specific se-
mantic understanding of the changes in commits shed light on
previously unobserved, but relevant aspects of practical software
development. We speculate that extensions to other domain areas
may open interesting follow-up research opportunities.

9 CONCLUSION
In this paper, we revisit the important problem of database evolu-
tion and the ripple effects caused in the application stack due to
co-evolution of database relevant application code.

We show that the problem is more complex and multi-faceted
than captured by metrics applied in the past. Since this research
problem lies in the no man’s land between software engineering
and database research, existing solutions from the respective re-
search communities will not be sufficient; as communities, we will
need to join forces to solve these problems together.
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