
Un
de
r

Re
vie
w

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

The Ripple Effects of Database Evolution
in the Application Software Stack

Wolfgang Mauerer
Technical University of Applied Sciences Regensburg

Siemens AG, Corporate Research
Regensburg/Munich, Germany
wolfgang.mauerer@othr.de

Atalay Karatay
Technical University of Applied Sciences Regensburg

Regensburg, Germany
karatay.atalay@gmx.de

Dimiri Braininger
Technical University of Applied Sciences Regensburg

Regensburg, Germany
dimitry.braininger@st.othr.de

Stefanie Scherzinger
University of Passau
Passau, Germany

stefanie.scherzinger@uni-passau.de

ABSTRACT
In the architecture of data-intensive applications, the database is a
suspected dependencymagnet: modifications of the database schema
are believed to substantially impact the remaining application code,
albeit often based on qualitative evidence. In related contexts, changes
with impact on large portions of the code base are known as rip-
ple effects. In this paper, we aim at understanding the impact of
hidden, database-induced dependencies and their ripple effects. As
we show, such dependencies largely elude established analysis ap-
proaches, in particular, co-change analysis. Instead, we propose a
semantically enriched generalisation of co-change dependencies
that allows us to capture long-range dependencies spread across
multiple commits. We also investigate a related set of usually hid-
den dependencies that stems from support for several database-
vendor-specific schemas, which can be handled and understood
with our approach. The induced couplings add further complexity
to the well-explored couplings between a (single-vendor) database
schema and the application code.

We present techniques built on a-priori expert knowledge that
allow for an automatic identification of database related code chan-
ges with high precision and recall. We demonstrate that this type
of change is very common in real-world applications, yet lacks at-
tention in software engineering and architecture. We apply and
evaluate the techniques on eight real-world data-intensive applica-
tions ranging from content management systems to domain name
servers. Our insights can serve as a basis for better tool support for
professional software development and maintenance, and to im-
prove software architectures for cross-functional concerns at the
intersection of database and software engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE’21, August 23–27, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Wolfgang Mauerer, Atalay Karatay, Dimiri Braininger, and Stefanie Scher-
zinger. 2021. The Ripple Effects of Database Evolution
in the Application Software Stack. In Proceedings of Foundations of Soft-
ware Engineering (ESEC/FSE’21). ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Processing data is a core endeavour of computer science and in-
formation technology. With software as driving force of computer
systems, and databases at the heart of data storage, one would as-
sume that software engineering and database research were two
closely intertwined fields that produce coordinated research in-
sights. Databases are, at least within their own research commu-
nity [64], believed to be “dependency magnets” in software archi-
tectures. Handling dependencies between artefacts and components,
on the other hand, is a long and well researched topic in software
engineering [44]. However, previous work has neglected to suffi-
ciently appreciate the connection and its implications, as we argue
in this paper.

Relational database management systems (RDBMS) form an ex-
tremely successful and widely deployed class of databases. They
use schemas, typically described in the data definition (sub)lan-
guage (DDL) of SQL [52], to define the logical and physical lay-
out of data storage, and interact via various interfaces with appli-
cations that process and use data stored in the RDMBS. Software
changes are caused by changing requirements and evolving fea-
tures [43], and the same holds for the database component (e.g.,
data formats [39]), and notably, its schema [3, 4, 18, 22, 39, 50, 60,
61, 63, 64, 67]. Collateral evolution of the database schema and the
application code is a known challenge, and has been studied in the
past [15, 39, 50]. Analysis of couplings and dependencies are key to
understanding structure and evolution of software. Unfortunately,
as we demonstrate, common mechanisms for detecting couplings
and implicit dependencies do not apply well to reveal relationships
between database schemas and application code.

Nonetheless, changes to databases are known to cause substan-
tialmaintenance effort [16, 39]:When the underlying database sche-
ma changes, queries and their result structures change [18], which
in turn can require comprehensive code changes. Unfortunately,

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ESEC/FSE’21, August 23–27, Athens, Greece Wolfgang Mauerer, Atalay Karatay, Dimiri Braininger, and Stefanie Scherzinger

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

abstraction layers like object-relationalmappers (ORM) are no pana-
cea, as the database is known to nevertheless inject dependencies
throughout the code base [33]. Code that depends on a database
schema has to co-evolve with it, one way or another.

In this work, we construct methods to automatically identify
couplings between the database, in particular the database schema,
and dependent code. Our methods alleviate the need for analyses
to assume that coupled changes happen in a single commit. In-
stead, they use a novel application of a-priori information to obtain
semantic information across commits. We use these techniques
to show that the influence of databases on software architectures
has not yet been fully understood, possibly because it concerns
uncharted territory between software and database engineering.
Moreover, we show that database-induced dependencies are more
pronounced than previously recognised, especially in two aspects:

(a) Long-range DB/code dependencies. Changes that relate a
modification to a database schema, along with the necessary code
adaption, are assumed to be performed in a single commit in tra-
ditional co-change analysis. We empirically find that this concen-
tration is not upheld by many projects. Rather, we find that co-
changesmay be temporally distributed over series of commits, lead-
ing to what we call long-range couplings.

(b) Dependencies between schema variants. Often, large-
scale data-centric applications such as MediaWiki, Roundcube, or
Joomla!, supportmultiple database backends that must be handled
and maintained in code, and of which only one can be chosen for
deployment. Often, the different database backends are used to im-
plement the same, or at least very similar, functionalities.

The development team must maintain vendor-specific schemas
that remain synchronised with each other: Any changes to the con-
ceptual schema underlying the application must be transferred to
all vendor schemas. Moreover, developers need to maintain varia-
tions of the database population and migration scripts (e.g., for up-
grading the production database from one version of the schema to
another), and must cope with variant-specific code within a data-
base access layer (DBAL) or other parts of the application.
Hypotheses. The overall question we address is as follows:

What is the influence of hidden, database-induced de-
pendencies and their ripple effects on software develop-
ment and architecture?

Before we refine this question into specific research hypotheses
that address different aspects of the general problem, let us outline
our overall results and contributions:
(1) We show that databases introduce dependencies between en-

gineering artefacts that are not reliably captured by standard
techniques. In particular, we identifymultivariate vendor/vendor
dependencies by including domain-specific a-priori knowledge,
and introduce an automated analysis that lifts restrictions of
previous approaches by including semantic meaning of com-
mits into co-change techniques. The method is validated with
a ground truth obtained by multiple human classifiers.

(2) We show that an extension of our mechanism to long-range
couplings substantially increases the number of successfully
detected co-changes, and that standard coupling analysismech-
anisms do not faithfully capture important aspects of such data-
base-induced dependencies.

Figure 1: DB-induced couplings along the commit history (t):
sql-files (s) andDB-code changes (c), within in the same com-
mit, are captured by traditional co-change analysis. Long-
ranging code-changes, spanning several commits, require
new approaches. Multivariate DB-applications, with several
vendor-specific schemas, add additional complexity that
must be accounted for by analyses.

(3) We likewise extend the vendor/vendor mechanism to long-ran-
ge couplings, and find that this likewise addresses a neglected,
but practically relevant scenario that identifies further database-
related dependencies. This is especially important for the fu-
ture design of tools to handle schema evolution. The database
research community has mainly focused on proposing tools to
support the operations team in managing different schema ver-
sions (e.g., [17, 19, 31, 47, 65]). Yet for the family of applications
considered here, there is only one specific database product
running in production. Thus, these tools do not address the
problem of multivariate vendor/vendor evolution, as faced by
the software development team.
Our results were obtained by two redundant and independently

built analysis pipelines.We thus provide our own replication study.
The complete source codes for both analysis pipelines, including
input data and generated artefacts, is available as a reproduction
package on the supplementarywebsite (clickable hyperlink in PDF).
The website also contains detail results omitted here.

Structure.Beforewe address our hypotheses, we review related
work in the context of our efforts in Section 2. We describe and
formalise our approach in Section 3, where we also take care to
ascertain methodological soundness using a statistical analysis.

2 RELATEDWORK
Our work lies at the intersection of software engineering and data-
base research, and mandates reviewing related work from both
communities. Since we find that database issues have not reached
the full consideration they deserve in software engineering, we
particularly try to provide a thorough review of this aspect.

2.1 Dependency and Coupling Mechanisms
Countless mechanisms have been proposed for detecting depen-
dencies between software artefacts; we refer to Ref. [44] and refer-
ences therein for a comprehensive introduction. Our work concen-
trates on semantic co-changes to software artefacts. Co-change (or
evolutionary dependency) analysis [36, 66] is built on the premise
that artefacts are coupled when they (frequently) change together
in a single commit. Database schema changes are sometimes fil-
tered out by tools as non-programming language artefacts. But
even if they are captured by a co-change implementation, their

2

https://user022021.github.io/db_app_evol/

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

ESEC/FSE’21, August 23–27, Athens, Greece

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

small occurrence frequency, caused by their disruptiveness [50]
and inherent complexity, increases their impact to a few rare, but
the more invasive changes [64]–developers try to actively avoid
or delay [60, 62] schema changes at all costs. This rarity makes
it easy to underappreciate their significance compared to regular,
frequent code co-changes.

The restriction of dependency inference to single commits is
lifted by association rule mining [68] or semantic couplings [34, 49,
55]. In addition to the rare occurrence of schema changes as such,
schemas are also known to be sparsely documented [40], which
renders such data-intensive analyses impractical.

Static dependencies [10] such as obtained from function calls do
not capture database schemas by design, since these do not con-
stitute programming language code implementing concepts like
function calls int the first pace.1

We find that database schema changes do transcend the imme-
diate temporal vicinity of the sql-file commit. So far, there are few
established methods for analysing couplings across several com-
mits (incomplete commits) [44], although observations about ripple
effects [8, 69] go back to at least 1978.

Another important aspect relates to identifying the semantics
of a change. Semantic couplings break ground in this direction, al-
beit based on machine learning techniques, and without prescribed
semantic notions. Classifying commits by content [32, 56] is re-
lated to our approach, albeit different classification categories are
used (e.g., bug fix, enhancement, documentation update), usually
learned from a textual representation of the change, instead of us-
ing classifiers constructed from a-priori expert knowledge.

Popular tools in software engineering research, including Scikit’s
understand [2] or Lizard [41] (used by GrimoireLab [23]), do not
support SQL, and cannot detect schema related couplings irrespec-
tive of lags. Research that considers file-level artefacts does not
need to parse the content of SQL schema files (and can therefore
easily support sql-files). However, Refs. [13, 35] show that depen-
dencies obtained on simultaneous changes to localised regions/func-
tions, or even lines [59] are more reliable than the mere fact that
developers worked on the same file, although few studies have
adopted such fine-grained approaches [29] so far. Our approach
rests on function-level decomposition wherever possible.

2.2 Databases and Software Engineering
It is a widely used assumption in the database community that
databases are a major source of dependencies in software engi-
neering [64]. In fact, the seminal specialist book [4] by Ambler
and Sadalage emphasises the challenge of evolving database appli-
cations given these dependencies.

Nevertheless, the seminal textbooks on software patterns, Refs. [11,
12, 26], spend surprisingly little attention on databases. Essentially,
they concentrate on the use of a database access layer and some se-
lected techniques to decouple database structure and applications.
In a more recent textbook, Fowler [25] argues in favour of a small
number of recommended patterns for DB applications; the seminal
textbook on software architecture by Bass et al. [6] only dedicates a

1Of course, most relational SQL-based databases offer stored procedures and similar
mechanisms, but these extensions do not touch the structural properties of schemas.

few pages on how to integrate databases in software architectures,
essentially advocating a database access layer.

Additionally, all references restrict their consideration to single-
vendor schemas. That is, it is assumed that the application is backed
by a specific database, for instance, PostgreSQL. However, many
extremely popular applications support multiple alternative data-
base backends in development (we call such applicationsmultivari-
ate), but only use one DB-variant in deployment, which is closely
related in spirit to configurable software product lines [5]. Rosen-
müller et al. [54] study tailor-made, problem-specific SQL dialects
generated from a family of SQL dialects, which is also related to
the problem of handling different vendor-specific SQL dialectes.
In general, the problem of multivariate database applications has
only recently started to gain attention in the software and data-
base engineering communities. Vassiliadis et al. [62] conduct the so
far largest-scale schema evolution analysis (over 195 applications).
The authors report on the difficulty of multi-variate DB applica-
tions during data collection, and ultimately, resort to analysing the
schema of one vendor only. First suggestions for tool-based han-
dling of multi-variate database architectures appear in Ref. [57]

Nevertheless, prior work on database aspects of software engi-
neering—with the notable exception of Qiu et al. [50]—usually ig-
nores the role of the commit history, and in particular, the time
frame that needs to be considered for analysing the implications
of a commit. While Qiu et al. focus on the schema changes in
a single-vendor scenario (even for repositories that actually are
multi-variate), we consider the problem in its full generality.

Interestingly, it has also been shown that object-relational map-
per frameworks such as Hibernate do not prevent dependencies
between the database and the application code [33, 45].

Delplanque et al. study the evolution of a database application in
production [20]. The team quantifies the substantial efforts caused
by schema evolution, and confirms other studies, decades prior [60].

Coupling between databases and application code is often made
more visibly with schema evolution, and manifests in a recognised
maintenance challenge. The earliest mentions we are aware of date
back several decades [60]. Ref. [21] describes a framework for evolv-
ing multi-database (which is not entirely identical with our sce-
nario, but refers to multiple simultaneous databases in production)
applications based on CORBA, and evaluate their framework on an
artificial prototype of such an application. Based on a similar no-
tion of coupling as our work, Gardikiotis et al. [27] estimate the im-
pact of schema changes on a web application. Follow-up work [28]
proposes a more general impact analysis of schema changes on ap-
plication code, based on an extended version of the program con-
trol flow graph, and relying on program slicing. The approach is
evaluated using a fictional application, which does not include real-
world commit cultures that we find essential in our study. Maule et
al. [42] analyse schema changes on 62 revisions of a single commer-
cial system, and identify locations in the source code that might be
affected by the change using code flow analysis.

It has been shown that evenwhen persistence frameworks (ORM
mappers) are used, there are still pronounced dependencies be-
tween the database and the application code, including test cases [33].

In essence, we find that the amount of scientific literature on the
intersection of software and database engineering is comparatively
meagre, given the long individual history of both fields. We also

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ESEC/FSE’21, August 23–27, Athens, Greece Wolfgang Mauerer, Atalay Karatay, Dimiri Braininger, and Stefanie Scherzinger

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

sense a large gap between state-of-the-art approaches propagated
in research, and the tools actually used in practice (e.g. observed
in a real-live study in [20], and as a general observation in [37]).

2.3 Database Evolution
Schema evolution itself is an intensively studied topic in the data-
base community. Schema changes are commonly called schema
modification operations (SMOs) [18]. Ambler et al. propose a classi-
fication of SMOs [4], which has also been applied in research [50].
Ambler lists SMOs that concern the logical schema (i.e., creating or
dropping a table, adding/dropping a column), and SMOs that con-
cern the physical schema (i.e., adding or dropping an index). One of
the strongest selling points in using database systems is that they
distinguish a logical and a physical schema. Thanks to the desir-
able property of data independence [52], the physical schema may
be changed without affecting the logical schema, or the applica-
tion code. Studies have shown that SMOs concerning the physical
schema are comparatively rare [50] for the majority of projects.

Existing schema evolution research mostly focuses on an empir-
ical understanding of the frequency and nature of schema changes
(e.g. [9, 18, 22, 39, 50, 60, 61, 63, 64, 67]), and usually ignores con-
sequences for the code. Among the few exceptions, Qiu et al. [50]
assume a more holistic point of view, and Curino et al. [18] study
the impact of schema changes on queries embedded in the appli-
cation code. Neamtiu et al. [39] study coupling between database
schema and migration scripts for migrating production data be-
tween schema versions. In particular, they identify vendor-side
changes (e.g., the database file format) as disruptive to applications.

Overall, empirical studies confirm that the schema evolves, and
that couplings between database and code causemaintenance over-
head. Nevertheless, there is little quantitative evidence further char-
acterising these dependencies, as we set out to provide.

3 RESEARCH DESIGN
3.1 Reference Projects
We analyse a diverse set of eight subject projects, from content
management systems to a DNS nameserver; Table 1 states key char-
acteristics like total number of general, schema, or database-related
commits, lines of code, etc., and shows that we selected projects
that vary in a number of important dimensions: (a) size (from 10k
to 500k LoC); (b) age (time since first commit; ten to twenty years);
(c) programming language (C++, PHP, Java); (d) application do-
main; (e) support for at least three different database vendors.

While our selection does not (and cannot) guarantee results that
fully generalise to every database centric application, it should
represent many typical choices. Moreover, most subject projects
have already been subjected to published empirical study [50, 67],
or even serve as a widely used schema evolution benchmark [18].
Thus, we cover de-facto reference projects in the analysis of evolv-
ing database applications, and have also tried to ascertain that the
subject projects represent practically successful database applica-
tions that enjoy popularity in the open source communities.

3.2 Analysis Process
One of our main tasks is to identify database-related artefacts in
repositories. Typical choices for artefacts in repository mining re-
search use either complete files, or resort to a more fine-grained
decomposition of the source code into functions. An analysis of
co-changes based on function artefacts is known to deliver consid-
erably better results [35]. Therefore, our analysis operates at the
function artefact level. We use established repository mining and
analysis tools [35] to decompose source files into artefacts.

Built-in replication study. We applied due diligence in our
data analysis. Results were obtained through two analyses, with dif-
ferent, independently written analysis pipelines. The second anal-
ysis was able to reproduce the results of the first (except for some
negligible differences in the sub percent range). The supplemen-
tary website describes both pipelines, compares the results, and
provides full sources for independent reproduction.

Commit Classification byWitnesses.We implement witness
functions to categorise artefacts as database related or not. Based
on a-priori knowledge and a manual analysis of the database APIs
and other abstraction mechanisms (or even SQL keywords embed-
ded in command strings, should projects use such techniques), we
compiled lists of project-specific keywords (available on the sup-
plementary website) that mark artefacts as database related when
their content matches a keyword. We use two types of witnesses:

(1) A database code witness identifies general programming lan-
guage code that performs an operation related to database is-
sues. At the level of function artefacts, this might check for
calls to variables named after project-specific conventions, e.g.
“$dbr->” for the database connection in PHP, or API calls such
as “wfGetDB(”, forMediaWiki. A filemay contain artefacts that
are related to databases, and others that are not.
It is also possible to specify file-level database code witnesses
that identify all artefacts in a file as database related, either
based on content string matching, or pathnamematching. This
is useful to compactly classify files that implement, for instance,
a database access layer. An example for Joomla! is the file reach-
able by the path installation/helper/database.php.

(2) A vendor witness checks for sql-files that contain DDL (data
definition language) statements, as well as DML (data manip-
ulation language) and rights management statements. Recog-
nition for this witness is at the file level, and can often be per-
formed by checking for certain file extensions (.sql) or rela-
tive base file paths in the repository.
We experiment with two implementations: (a) The first recog-
nises any change to a sql-file, and (b) the second recognises a
change to the subset of files where the main database schema
is declared (this is identified by applying a-priori knowledge).
In particular, the files recognised by implementation (a) addi-
tionally contain files that are used by the operations team to
migrate production data to the current schema (via ALTER TA-
BLE statements). Unless stated otherwise, we rely on imple-
mentation (a), but we will also explore whether there are sig-
nificant differences by this more coarse-grained approach.

Implementation details and exactwitness specifications are avail-
able in the replication package on the supplementary website.

4

https://user022021.github.io/db_app_evol/
https://user022021.github.io/db_app_evol/
https://user022021.github.io/db_app_evol/
https://user022021.github.io/db_app_evol/
https://user022021.github.io/db_app_evol/

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

ESEC/FSE’21, August 23–27, Athens, Greece

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Overview of the investigated projects (PDF provides clickable links for repository names and hashes). #DBs: number
of supported vendors; #Cmts: number of commits; #DB-C: number of multivariate sql-file commits.

Project Description Time Range #DBs #Cmts #Schema #DB-C Hash Lines Of Code (@Hash)

Schema DB-C Non-DB

BiblioteQ Library Mgmt 03/08 ∼ 05/20 3 2.817 162 58 97b46e1 2.815 40.239 246.150
Joomla! CMS 09/05 ∼ 05/20 3 32.230 1.590 377 be05a58 25.893 266.912 891.588
MediaWiki Wiki 01/02 ∼ 05/20 6 96.624 1.121 151 02d827e 14.990 263.606 1.834.769
OSCAR EMR Medical SW 11/02 ∼ 05/20 3 22.693 1.678 13 0aabdfd 343.791 523.623 1.610.974
phpBB Bulletin Board 02/01 ∼ 05/20 7 34.425 1.442 343 2bf9202 8.873 182.491 267.404
PowerDNS Nameserver 11/02 ∼ 05/20 8 19.017 111 32 628cefe 1.114 13.283 545.410
Roundcube Webmail 09/05 ∼ 05/20 5 11.730 148 70 46d3cae 3.154 23.148 280.777
TYPO3 CMS 10/03 ∼ 05/20 5 29.606 550 13 4c6d801 1.724 308.373 965.438

Intuitively, a witness checks if a commit satisfies a certain prop-
erty. We are interested in four discernible properties as shown in
the table right below. Therefore, we solve a multi-class classifica-
tion problem that assigns a commit into one of these categories
“S” refers to a sql-file, “DBC” to database related code; ✓ signifies
presence, and ✗ absence of such a change in a commit.

Class S DBC

0 ✗ ✗

1 ✗ ✓

2 ✓ ✗

3 ✓ ✓

Differently from the seminal work
of Qiu et al. [50], which relies on
manual analysis of co-committed code
and assumes all dependencies between
schema and related code are resolved
within single commits, we fully auto-
mate our classification and can scale to
any number of commits for arbitrary lags, based on a project spe-
cific set of witness functions that needs to be provided by human
experts. Compared to a general manual analysis of commits, this
is a one-time up-front investment whose effort is independent of
the number of analysed commits. In a first step, two of the authors
have devised and refined automatic classifiers based on a-priori,
expert knowledge, and manual inspection of the subject projects.

Formalisation. Tomake our scenario precise, let us commence
with a formal description. We assume basic familiarity with vec-
tor norms, specifically, the family of 𝑝 norms defined by ∥ ®𝑥 ∥𝑝 =(∑

𝑖∈N ∥𝑥𝑖 ∥𝑝
)1/𝑝 , where the special cases 1 and ∞ used in this pa-

per reduce to ∥ ®𝑥 ∥1 =
∑
𝑖 |𝑥𝑖 |, and to ∥ ®𝑥 ∥∞ = max(|𝑥1 |, . . . , |𝑥𝑛 |).

Consider a repository whose commits have been linearised into
a sequence of totally ordered commits ®𝐶 = (𝑐1, 𝑐2, . . . , 𝑐𝑁)T ∈ 𝐻𝑁

in the usual way (see, e.g., Refs. [7, 35]). Each commit is charac-
terised by a tuple (ℎ, 𝑡a, 𝑡c,𝑚, {𝑓1, . . . , 𝑓𝑛}) ∈ 𝐻 , where ℎ is a unique
hash value, 𝑡a and 𝑡c denote author and committer timestamps,𝑚
is the commit message, and {𝑓𝑖 } the set of all changes induced
by the commit, grouped by file.2 We denote the number of (non-
merge) commits in the repository under consideration by 𝑁 . The
total ordering guarantees that 𝑡 (𝑐1) ≤ 𝑡 (𝑐2) ≤ · · · ≤ 𝑡 (𝑐𝑁), where
𝑡 : 𝐻 → N extracts committer time 𝑡c out of a commit.

We infer properties of a commit using a witness function

𝑊 : 𝐻 → F2

2When multiple hunks for a single file are present in a commit, we count these as one
combined change to a file. The layout of how a commit is presented in git differs from
our exposition, because this is not relevant for the analysis.

that maps a commit 𝑐 ∈ 𝐻 to a Boolean value, indicating presence
or absence of a property. For instance, we may use a witness to
indicate whether a commit contains a change to any schema file or
not; another witness decides whether a commit contains a change
to database-related code.

We group related witnesses in vectors (𝑤1,𝑤2, . . . ,𝑤𝑘)T. Since
we are interested in detecting properties of a given time interval,
that is, sub-sequences of ®𝐶 , we define a lag operator with signature

�̂�
𝑝

𝑖,𝑗
: (𝐻 → F2)𝑘 × 𝐻𝑁 → N0,

where 𝑖, 𝑗 ∈ N and 𝑝 ∈ {1,∞}. Givenwitnesses ®𝑤 = (𝑤1,𝑤2, . . . ,𝑤𝑘)T,
and a sequence of commits in ®𝐶 , the operator applies as

�̂�
𝑝

𝑖,𝑗
®𝑤 ®𝐶 =

𝑖+𝑗∨
𝑛=𝑖

®𝑤 𝑐𝑛

𝑝

Example. Intuitively, the lag operator computes a collective
property for an interval of commits. The application of witnesses
to a commit, denoted by ®𝑤𝑐𝑛 , results in the vector

(𝑤1 (𝑐𝑛),𝑤2 (𝑐𝑛), . . . ,𝑤𝑘 (𝑐𝑛))T ∈ F𝑘2 .

Depending on the choice of 𝑝 , either sum (0) or maximum (∞)
norm are used. Intuitively, for 𝑝 = ∞, the operator checks exis-
tence of the witnessed property in commit range [𝑖, 𝑖 + 𝑗], whereas
for 𝑝 = 1, the operator counts how often a property is satisfied.

Fig. 2, shows three commits (labelled 7-9), together with the files
changed in each commit. We visually distinguish sql-files and DB-
relevant code changes. In the figure, we show the result of applying
he vendor witnesses ®𝑤𝑣 to the commits, to register when sql-files
for the vendors MySQL, DB2, or PostgreSQL are changed.

We further show the application of the DB-code witnesses ®𝑤𝑑𝑏𝑐

to the commit history, to track whether any DB-relevant code was
changed in a commit, and how this code was recognised (on a per-
file basis, or by detecting DB-specific API keywords).

We then compute the lag operators, as shown in the table to the
right. This table reads as follows.We focus on commit 7 as our start-
ing point. This is a schema-commit, as the file mysql.sql changes.
Let us consider the vendor witnesses first, and focus on the second
column: With a lag of 0, we only encounter a univariate schema
change. Extending the lag to 1 and 2, we observe a multivariate

5

https://github.com/textbrowser/biblioteq
https://github.com/textbrowser/biblioteq/commit/97b46e1edfba35cb135c2375ae6b2518be6367fb
https://www.github.com/joomla/joomla-cms
https://github.com/joomla/joomla-cms/commit/be05a588c039a97c7ac21d00be7100a7208c7cb4
https://www.github.com/wikimedia/mediawiki
https://github.com/wikimedia/mediawiki/commit/02d827e2347b61e55e697c997a1bccca9bdc6597
https://bitbucket.org/oscaremr/oscar/src/stable/
https://bitbucket.org/oscaremr/oscar/commits/0aabdfd9e0ef435f7ee0893bb6095771fbf9ac52
https://github.com/phpbb/phpbb
https://github.com/phpbb/phpbb/commit/2bf92024c727d3e794c6baad9e4b786c5daf4c21
https://www.github.com/powerDNS/pdns
https://github.com/powerDNS/pdns/commit/628cefe500ba6797d20502f5ec672ea2fba6afc3
https://github.com/roundcube/roundcubemail
https://github.com/roundcube/roundcubemail/commit/46d3cae2ffa420638709acecf8d5c659da109de0
https://github.com/TYPO3/TYPO3.CMS
https://github.com/TYPO3/TYPO3.CMS/commit/4c6d801e80211cd63a1f328fbba0b7a9503e1afe

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ESEC/FSE’21, August 23–27, Athens, Greece Wolfgang Mauerer, Atalay Karatay, Dimiri Braininger, and Stefanie Scherzinger

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

𝑡

7 8 9

211

y.php
mysql.sql

x.php db2.sql
mysql.sql

x.php bar.phpfoo.phpdbal.php

DB API code DB related file i Schema (vendor 𝑖)

®𝑤
v

®𝑤
db

c

(1
0
0

) (1
1
0

) (0
0
0

)
(
0
1

) (
0
0

) (
1
1

)
MySQL
DB2
pgSQL

File
API

Figure 2: A linearised git commit history, and the applica-
tion of witness vectors (pgSQL = PostgreSQL).

commit (with the lag operator capturing two changed schemas).
For lags 0-2, there is at least one schema change (third column).

We focus on the database code witnesses next. Already with
lag 0, we encounter a coupled DB-code change (fifth column).

Thus, the lag operator allows us to track whether database re-
lated code is encountered, and how many vendors are witnessed,
within a given window.

®𝑤 = ®𝑤v ®𝑤 = ®𝑤dbc
𝑝 1 ∞ 1 ∞

�̂�
𝑝

7,0 ®𝑤 ®𝐶 1 1 1 1
�̂�
𝑝

7,1 ®𝑤 ®𝐶 2 1 1 1
�̂�
𝑝

7,2 ®𝑤 ®𝐶 2 1 2 1

We focus on the data-
base code witnesses next.
Already with lag 0, we
encounter a coupled DB-
code change (fifth column).

Thus, the lag operator
allows us to track whether
database related code is encountered, and how many vendors are
witnessed, within a given window.

Quality Analysis. To verify the quality of our classification
mechanism–following the recommendations by Reyes et al. [53]
for software engineering research–, we use a random sample of 20
commits per project, uniformly and randomly sampled from the
four classes, as decided by the automatic classifier. This results in
160 commits (which is comparable to the sample of 146 commits of
Ref. [50]) subjected to an independent, manual classification by all
four authors,without up-front consultation of the automatic classi-
fier results. Decisions were based on content of the commit and the
complete textual content of the artefacts modified by each commit.
A custom UI tool was used to minimise manual glitches; discrep-
ancies were resolved by consensus. Table 2 shows the resulting
multi-class confusion matrix [30].

We achieve an overall accuracy of 88.75%, and the 95% confi-
dence interval spans [82,8%, 93.2%], as computed by the methods
provided by Refs. [38, 48, 51]. Precision, recall and F1-score by class
are provided in Table 2; larger values can hardly be expected for

Table 2: (Left, grey background) Multi-class confusion ma-
trix for database code witnesses, and related statistical char-
acteristics of the classifier. (Right) Class-resolved statistical
characteristics. Classes (0)–(3) as defined in the main text.

Ground Truth (Reference)
0 1 2 3 Prec. Recall F1

Pr
ed
ic
tio

n 0 23.1% 5.6% 0.0% 0.0% 80% 93% 86%
1 1.9% 19.3% 0.0% 0.0% 91% 78% 84%
2 0.0% 0.0% 21.3% 0.0% 100% 85% 92%
3 0.0% 0.0% 3.8% 25.0% 87% 100% 93%

statistical processing of information involving human participa-
tion [46]. Typical values for precision and recall range around 85%,
which compares not unfavourably to current state-of-the-art of
72% recall as reported in Ref. [50] for database co-change detection.
We explicitly note, however, that method and evaluation differ be-
tween op. cit. and our work, which prevents an entirely straight-
forward comparison.

Consequently, we argue that our analysis method and pipeline
provide an apt basis to derive sound statistical conclusions from
real-world software engineering data.

3.3 Evolution scenarios
Figure 3 illustrates possible temporal evolution scenarios. Scena-
rio (a) shows a linear commit history with a univariate sql-file
change 𝑠1 not accompanied by coupled code changes, neither di-
rectly in the same commit, nor in later commits. Most previous
empirical studies on schema evolution [18, 22, 50, 60, 61, 64, 67] re-
volve around capturing nature and frequency of schema changes,
assuming this simple scenario.

However, more disruptive schema modifications necessitate al-
tering DB-relevant code. Scenario (b) shows a possible approach,
where sql-file change (𝑠1) and the coupled code change (𝑐1) are
committed together. Scenario (c) generalises to multivariate DB
applications. Related changes to sql-files for different vendors are
combined in a single commit, together with relevant code changes.
This strategy is present in the subject projects, although real devel-
oper behaviour often leans more towards scenario (d). It shows
how a sql-file change can be temporally decoupled from related
code changes: One code change happens in the same commit (lag
0), another one is delayed until two commits after (lag 2).

Scenario (e) is the most general case. sql-files for two ven-
dors and dependent code change in different commits on different
branches, which eventually merge with a common ancestor. Lin-
earising commits [35, 70]) creates a well-defined temporal order
(dashed commits), and induces a vendor/vendor co-change struc-
ture (e.g., commits 0+4, counting from the left) as well as sql-
file/code couplings (e.g., commits 0+3, or 2+3).

4 HYPOTHESIS 1
We now target our first hypothesis: Database induced depen-
dencies between artefacts can be automatically revealed by

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

ESEC/FSE’21, August 23–27, Athens, Greece

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

(a)
𝑠1

(b)
𝑠1, 𝑐1

(c)

𝑠1, 𝑐1
𝑠2, 𝑐2

(d)
𝑠1, 𝑐1 𝑐1

(e)
𝑠1 𝑠1 𝑐1 𝑠2 𝑐2

Figure 3: Different commit strategies (circle: commit). (a) Un-
coupled univariate sql-file change; (b) univariate sql-file
change coupled with a database code change in the same
commit; (c) multivariate schema changes (sql-file/DBcode
and vendor/vendor coupling in one commit); (d) univariate
scenario with lag 0+2 sql-file/DB code couplings; (e) coupled
changes with separate branches for two vendors.

semantically-enriched co-change analysis. So far, existing ef-
forts [50] for coupling analysis between sql-files and the applica-
tion code rely heavily on manual analysis to recognise DB-related
code. Moreover, existing approaches ignore multivariate sql-files,
even when the applications studied are multivariate.

We next quantify the couplings identified byDB-aware coupling
analysis, focusing at one commit at-a-time. This allows us to dis-
tinguish the scenarios (a) through (c) from Figure 3.

Witness result distribution. sql-files may happen to be ig-
nored in coupling analysis that is based on co-changes when they
are not classified as programming language code. To estimate their
possible effects in co-change approaches based on single commits,
observe the distribution of commit content shown in Fig. 4: For
each project, we classify commits into four groups, dependingwhe-
ther or not the commit affects a sql-file, and whether or not it con-
tains DB-related code. Here, we consider all sql-files, and we will
explore the effect of focusing only on those sql-files that contain
the main schema declaration in our exploration of Hypothesis 2.

sql-files coupled with database related code are the most infre-
quent combination for most projects–changes to sql-files are usu-
ally not accompanied by database code changes, at least not within
the same commit. More importantly, they are dominated by data-
base code changes. In frequency-based evaluations of co-changes,
the possible impact of sql-files is therefore substantially limited,
and traditional coupling analysis is likely to regard them as “noise”.

Database related code changes typically comprise 30%–40% of
commits. Analyseswithout information on change semantics (data-
base vs. non-database) are unable to capture this property: A con-
siderable share of commits involves changes to one particular ar-
chitectural element of the software stack, namely the database. We
are not aware that this observation is reflected in previous work.

We conclude that the share of sql-files is essentially negligi-
ble on the single-commit level, yet considerable effort is spent on
database-related changes for all subject projects. This is even visi-
ble in a simple analysis that utilises a window of size 1 (i.e., lag 0).

Detected couplings. We next examine the dependencies ob-
servable for sql-files in more detail. Consider Table 3. For each
project, we list the probability of a DB-related code change in the

0%

25%

50%

75%

100%

Bib
liot

eQ
Joo

mla
!

Med
iaW

iki Osc
ar

Pow
erD

NS
php

BB

Rou
ndC

ube Typ
o3

Fr
ac
tio

n

Non-SQL File

SQL File

App Code

DB Code

Figure 4: Distribution of change types in individual com-
mits. Changes can affect sql-files or non-sql-files, and mod-
ify code related or not related to databases. Four combina-
tions of colour and pattern are possible.

Table 3: Given a sql-file change: Probability of co-change
within the same commit (lag 0) for DB-related code (S/DBC),
and a sql-file for an alternative vendor (V/V).

Project S/DBC V/V Project S/DBC V/V

BiblioteQ 50% 36% Joomla! 26% 24%
MediaWiki 40% 13% OSCAR EMR 28% 1%
phpBB 47% 24% PowerDNS 18% 29%
Roundcube 32% 47% TYPO3 47% 2%

same commit (S/DBC). We further list the probability of a sql-file
change for at least one other vendor within the same commit (V/V).

For the column labeled “S/DBC”, we are able to reproduce the
core results from Qiu et al. [50] (within reason), who showed that
in approx. 50% of all commits changing sql-files, we find DB-rele-
vant code. We deem this a relevant contribution: (1) while both
studies have an overlap in the analysed projects, there are differ-
ences, so the results are robust and generalisable. Further, (2) the re-
sults of Qiu et al. heavily rely on manual code inspection, allowing
only for 100 commitswith schema changes to be analysed, whereas
we have analysed a total of over 6.8k changes to sql-files.

Regarding the probability of a co-change with the sql-file of an
alternative vendor, we can observe that it is consistently lower (per
project) than for DB-code. Notably, the probability is close to zero
for OSCAR EMR and TYPO3. We provide an explanation as part of
our discussion in Section 8.

Conclusion. sql-file changes are comparatively rare. This cre-
ates a bias for traditional code coupling analysis, whichmay regard
database-induced dependencies as mere noise. Moreover, code cou-
pling analysis must be made DB-aware, both in recognising sql-

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ESEC/FSE’21, August 23–27, Athens, Greece Wolfgang Mauerer, Atalay Karatay, Dimiri Braininger, and Stefanie Scherzinger

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

files as relevant sources of dependencies, and in recognising DB-
related code. We can confirm earlier results on DB-related code
coupled with sql-files in the same commit, based on an automated
classification, and a data pool larger by orders of magnitude.

Moreover, we have identified a so far unexplored class of data-
base-induced dependencies that are specific to multivariate appli-
cations. These dependencies are less pronounced in comparison,
but nevertheless significant. Thus, we can confirm Hypothesis 1.

5 HYPOTHESIS 2
We now challenge traditional coupling analysis based on relating
changes within single commits. We hypothesise that dependen-
cies between sql-files anddatabase related code predominantly
manifest themselves as long-range ripple effects.

For each commit 𝑛 containing a sql-file, we compute the lag
operator �̂�∞

𝑛,𝑙
®𝑤𝑑𝑏𝑐

®𝐶 for all lags 𝑙 ∈ [0, 20]. For each 𝑙 , and resolved
by project, Figure 5 plots the probability that a schema change is
accompanied by database relevant code change within lag [0, 𝑙]
(naturally, all curves are monotonically increasing, as lag 𝑘 +1 sub-
sumes lag 𝑘 , when counting from the same commit 𝑛). Different
from H1, we now study lags greater than zero, and thus, a larger
window of commits. Scenarios (d) and (e) in Fig. 3 represent typical
situations relevant for this hypothesis.

We need to address one possible source of noise, namely the in-
fluence of sql-files that are only relevant for the operations, not
the development team. Fig. 5 contains two curves for the projects
that distinguish between these two types of sql-files: One repre-
sent a calculation that only considers all sql-files, while the other
is restricted to main sql-files. A green line visualises the point-
wise difference. Especially for the lower lags, we observe absolute
differences of roughly 10%. The overall shape of the curves is inde-
pendent of the measurement variant in good approximation, and
the differences quickly vanish for higher lags.3 This indicates that
it is sufficient to consider all changes to sql-files without prior
filtering (and even more importantly, without leveraging a-priori
knowledge which sql-files declare the main database schema).

Secondly, consider how the probability of observing a co-change
varies with increasing lag. Joomla!, MediaWiki, and OSCAR EMR
start with 25% for lag 0, and rise to around 75% at lag 5. BiblioteQ,
phpBB, and Typo3 start off slightly higher ground at 50% probabil-
ity, but rise to more than 90% at lag 5. Nearly all subject projects
reach almost 100% probability at lag 10. This means that estab-
lished co-change dependency techniques that only consider lag 0
can miss the existence of co-changes by a factor of two to three
probability-wise, and lose important structural information.

PowerDNS and RoundCube are apparent outliers. Manual in-
spection of the project commit histories reveals schema changes
that correspond to scenario (a) from Fig. 3 and do not inject depen-
dencies into the application code. Both projects frequently change
indexes (this observation is quantitatively confirmed in Ref. [50]
for Roundcube). As discussed in Section 2.3, such changes do not
require updates in the application code because they concern only

3We remark that the observation of larger co-change probabilities for main sql-files is
consistent with a DevOps approach: Main sql-file changes occur in the “Dev” phase,
whereas incremental changes address modifications to already deployed database in-
stances, and relate to the “Ops” phase, with less need for code changes because the
actual development has already taken place in the “Dev” phase.

the physical, not the logical schema.4 In contrast, logical changes
such as renaming, adding, or deleting columns can be expected to
be more disruptive, as we observe for the other subject projects.

Conclusion.Our analysis shows that considering non-zero lags
is required for all projects, if we are to reliably capture changes
to sql-files along with DB-relevant code changes. Traditional co-
change analysis techniques, which are based on single commits,
will not faithfully recover all existing couplings between sql-files
and database code, due to the long-term ripple effects caused.

Again, we can confirm our hypothesis, which can be seen as
quantitative confirmation of database engineering folklore of the
database as a dependency magnet [4, 64]. Highlighting the impor-
tance of changes spread across commits is possible because our
method allows us to provide of a semantic link between tempo-
rally remote commits.

6 HYPOTHESIS 3
We now explore the multivariate vendor/vendor couplings iden-
tified in Hypothesis 1, and how they behave with increasing lags.
Our hypothesis is thatdependencies caused bymultivariate ven-
dor/vendor couplings predominantly manifest themselves as
long-range ripple effects. This is related to the previous hypoth-
esis, but now addresses a different aspect of software variability.

For each commit 𝑛 containing a sql-file, we compute the lag
operator �̂�1

𝑛,𝑙
®𝑤𝑣

®𝐶 for all lags 𝑙 ∈ [0, 20]. Unlike forHypothesis 2, we
compute �̂�1 instead of 𝐿∞, because in a first step, we are interested
in learning how many sql-files associated with different database
vendors are encountered within a given window. In a second step,
we characterise a lag 𝑙 window as either multivariate (two or more
vendors), or as univariate (only one vendor throughout).5

Figure 6 visualises the results, by project: The total amount of
witnessed vendor-vendor couplings per lag 𝑙 is split into univari-
ate andmultivariate sql-file changes, and the relative fractions are
shown by yellow triangles (multivariate), and grey points (univari-
ate): For instance, 36% of all sql-file changes at lag 0 in BiblioteQ
address multiple database vendors, and 64% only concern a single
vendor (we list explicit values for lag 0 in Table 3). Standard co-
change analyses would therefore conclude that the univariate case
dominates the multivariate case. However, the distribution flips
when higher lags are taken into account; eventually, the relative
fraction of multivariate cases is about 2/3, where the univariate
changes only comprise every third schema change.

While the ratios between univariate and multivariate sql-file
changes varies among subject projects, all except OSCAR EMR and
Typo3 at least double the fraction of multivariate changes by lag 20.

Conclusion. Overall, we observe a distinct effect of long-range
multivariate couplings, yet not as influential as for H2. Regardless
of the specific fraction, multivariate sql-file changes are well rep-
resented in our sample of subject projects. As for H2, in general,
4This so-called data independence between the physical and logical schema is a highly
desirable feature of databases [52].
5The rationale rests on the consequence that multivariate modifications imply: When
themultivariate case must be frequently supported in a project, providing appropriate
tool assistance may be required. However, the decision to build or deploy an appropri-
ate tool does not depend on the fact how often a specific vendor is usually addressed
within an interval, but the fact that the multivariate case needs to be handled fre-
quently at all. Similar thinking applies to other scenarios that need to distinguish
between univariate and multivariate cases.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

ESEC/FSE’21, August 23–27, Athens, Greece

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

PowerDNS phpBB RoundCube Typo3

BiblioteQ Joomla! MediaWiki Oscar

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Lag

Pr
ob
.o
fC

o-
Ch

an
ge

fo
rL

ag

All Schema Artefacts Main Schema Difference

Figure 5: Lag coupling analysis for H1. Each data point summarises the probability of at least one co-change of a sql-file and
database-related code within the given lag. Gray, round data points consider all sql-files. Ochre, triangle data points consider
only files where the main schema is declared. The difference between both variants (green, square) never exceeds 10%.

these results show that for most projects analysed, there is a mar-
ket for designing tools that assist with vendor/vendor couplings.

Apparently, we can group the subject projects: (1) For BiblioteQ
and RoundCube, the multivariate case exceeds the univariate case
within a few lag increments. (2) OSCAREMR andTYPO3 aremarked
outliers, with the univariate line consistently high, and the multi-
variate line consistently low. (3) In the remaining four projects, it
takes the multivariate line a lag of 20 or more to close in on the
univariate line. We discuss the implications in Section 8.

7 THREATS TO VALIDITY
This section discusses possible threats to validity, as well as our
counter-measures. Some generic threats common to repositorymin-
ing projects (such as implications of linearising a nonlinear commit
history, or relying on the correctness of underlying, widely used
tools), are shared with comparable studies (e.g., Refs. [35, 50, 70]),
and not discussed here.

Computation of DB-witnesses. The largest threat to valid-
ity is our automated computation of DB-witnesses, based on a-
priori knowledge of the folder structure, naming conventions, and
database-specific APIs. Yet as we show in our results for Hypoth-
esis 1, we were able to confirm that our approach is indeed sound
and robust. We thus deem this threat as only marginal.

Computing vendorwitnesses.Weconsider all changes in sql-
files for coupling analysis. In contrast, Qiu et al. [50] perform thor-
ough data cleaning to identify the valid schema changes (and to
ignore changes that merely pretty-print, or fix typos in comments,
etc.). Moreover, we do not distinguish between DDL changes (e.g.,
CREATETABLE statements) fromDML changes (e.g., INSERT INTO
statements). The latter populate the database with initial data, and
do not actually change the schema. Our motivation is that changes

to the initial data do affect the database component in the software,
and can very well have dependencies into the remaining applica-
tion code. As our overall theme is to study the database as a depen-
dency magnet, we deem this decision reasonable.

Despite a simpler data preparation phase, for lag-0, we are able
to reproduce the main result of Qiu et al., namely that for approx-
imately 50% of schema-changes, the DB-relevant, dependent code
is changed within the same commit. Thus, we regard the threat
imposed as acceptable.

Lag direction. We consider only lags equal to or greater than
zero, but never negative. This is a conscious choice: Empirical stud-
ies on the frequencies of schema modification operations [14, 50,
67]), agree that additions outweigh the removal of tables and co-
lumns by far. A column can be added to a sql-file before adapting
dependent code, without breaking the application.When a column
is removed, any references must be removed from the dependent
code before, otherwise the applicationwill break. Additions are cap-
tured by positive lags, removals require negative ones, with the
sql-file change as the anchor. Since additions outweigh deletions,
we consider this restriction fungible, given the simplicity gains.

Generalisability. One possible threat is that our results might
not generalise to projects other than those studied here. However,
we have chosen well-known database applications, most of which
are also featured in other studies on schema evolution. They cover
a certain range of use cases (from content management systems
to a DNS server), and involve different programming languages
(e.g., C++, Java, PHP). We are therefore confident that our analysis
indeed allows to derive generalisable conclusions.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ESEC/FSE’21, August 23–27, Athens, Greece Wolfgang Mauerer, Atalay Karatay, Dimiri Braininger, and Stefanie Scherzinger

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

PowerDNS phpBB RoundCube Typo3

BiblioteQ Joomla! MediaWiki Oscar

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Lag

Re
la
tiv

e
Fr
ac
tio

n

Change Type Univariate Multivariate

Figure 6: Lag coupling analysis for H2. Each data point summarises the relative fraction of commits with a co-change of a sql-
file with a sql-file for an alternative vendor. Gray, round data points denote univariate commits; ochre triangle data points
denote multivariate commits.

8 DISCUSSION
In this paper, we have tried to better understand the influence of
hidden, database-induced dependencies and their ripple effects on
software development and architecture. Our analysis confirms dif-
ferent types of dependencies induced by databases: Couplings be-
tween sql-files and database code, and couplings between sql-
files that represent essentially the same information about physi-
cal and logical schemas, but for different vendors.While the former
have received initial treatment in the scientific literature, but are
still underexplored, the latter are entirely unexplored to the best of
our knowledge. We found that both types of dependencies occur
frequently in large real-world systems, and cause dependency rip-
ples, whose consequences must be tackled by software developers.

For identifying the relationships, we find it instrumental to aug-
ment existing coupling analysis mechanisms with a domain spe-
cific semantic understanding. This allows us to include structural
properties beyond a pure textual level in the analysis. Typically,
a quarter of all commits in the subject projects perform database
related changes. This seems to underline the importance of going
from a purely factual level (“there exists a connection between A
and B”) in co-change analyses to an understanding of what a given
co-change is actually about.

As we have remarked in Section 2, there is comparatively little,
but long-standing research activity on the subject of schema evolu-
tion and the coupling between schemas and code in data-intensive
applications. This shows the ongoing interest in viable solutions.
Yet when the long-standing pattern recommendations on how to
decouple databases and applications are contrastedwith the strong
couplings identified in our work, this seems to indicate that best
practices such as introducing a database access layer do not suffice.
We find the problem does not yet receive the attention it deserves

from both an applied tool-centric point of view and from the per-
spective of research. Perhaps the involvement of two mostly dis-
joint communities plays a role. Nonetheless, with the growing in-
fluence of data science and the ability to routinely analyse huge
datasets, we expect that impact and importance of the problem
will increase in the future, and that software architectural solutions
that provide an effective decoupling are required. We identify two
promising strategies:

(1) Consciously weigh benefits of multivariate database support
against the increase in complexity and efforts (obviously, aware-
ness about the effective costs of multivariate database support
is a precondition, which we hope to raise with this paper). OS-
CAR EMR ended support for vendor Oracle in 2011, whichman-
ifests in near-to-no multivariate couplings in Figure 6.

(2) Introduce an appropriate abstraction layer in form of a schema
manager. This might seem closely related to database access
layers as recommended for decades, but is a different archi-
tectural pattern, where vendor-specific schemas are generated
from a common model, rather than synchronised manually. In
2016, TYPO3 introduced the Doctrine schema manager [1]. We
believe this explains why the behaviour in Figure 6 resembles
that of a univariate application.

We argue that the latter strategy should enter the curriculum of
software architecture and engineering textbooks, which currently
treat couplings between databases and application code only cur-
sorily. It is interesting to observe that relief came from a “Dev” tool,
closely related to ideas of product lines and generative software en-
gineering, while the database community has so farmostly focused
on “Ops” tools and approaches, as noted in the introduction.

The current surge of interest in NoSQL databases is fuelled by
the desire to eliminate the existence of fixed database schemas,

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

ESEC/FSE’21, August 23–27, Athens, Greece

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

which would also reduce dependencies between schema and data-
base code. Unfortunately, the approach works mostly for the “Ops”
team in DevOps scenarios, but provides only temporary relief for
developers because similar problems are known to eventually re-
surface, e.g. for NoSQL stores [58] or polystores [24].

All in all, we find that augmenting the established and proven
ideas of co-change dependency analysis with domain-specific se-
mantic understanding of the changes in commits shed light on
previously unobserved, but relevant aspects of practical software
development. We speculate that extensions to other domain areas
may open interesting follow-up research opportunities.

9 CONCLUSION
In this paper, we revisit the important problem of database evolu-
tion and the ripple effects caused in the application stack due to
co-evolution of database relevant application code.

We show that the problem is more complex and multi-faceted
than captured by metrics applied in the past. Since this research
problem lies in the no man’s land between software engineering
and database research, existing solutions from the respective re-
search communities will not be sufficient; as communities, we will
need to join forces to solve these problems together.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ESEC/FSE’21, August 23–27, Athens, Greece Wolfgang Mauerer, Atalay Karatay, Dimiri Braininger, and Stefanie Scherzinger

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

REFERENCES
[1] [n.d.]. Doctrine Schema Manager. https://www.doctrine-project.org/.
[2] [n.d.]. Scitools Understand toolkit. https://www.scitools.com/.
[3] Scott Ambler. 2003. Agile Database Techniques: Effective Strategies for the Agile

Software Developer. Wiley Publishing.
[4] Scott W. Ambler and Pramodkumar J. Sadalage. 2006. Refactoring Databases:

Evolutionary Database Design. Addison-Wesley Professional.
[5] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-

Oriented Software Product Lines: Concepts and Implementation. Springer Publish-
ing Company, Incorporated.

[6] Len Bass, Paul Clements, and Rick Kazman. 2012. Software Architecture in Prac-
tice (3rd ed.). Addison-Wesley Professional.

[7] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. German,
and Prem Devanbu. 2009. The Promises and Perils of Mining Git. In Proceed-
ings of the 2009 6th IEEE International Working Conference on Mining Software
Repositories (MSR ’09). IEEE Computer Society, 1–10. https://doi.org/10.1109/
MSR.2009.5069475

[8] Sue Black. 2001. Computing ripple effect for software maintenance. Journal of
Software Maintenance and Evolution: Research and Practice 13, 4 (2001), 263–279.
https://doi.org/10.1002/smr.233

[9] Dimitri Braininger, Wolfgang Mauerer, and Stefanie Scherzinger. 2020. Replica-
bility and Reproducibility of a Schema Evolution Study in Embedded Databases.
In Advances in Conceptual Modeling - ER Workshops (Lecture Notes in Computer
Science, Vol. 12584), Georg Grossmann and Sudha Ram (Eds.). Springer, 210–219.

[10] Tyson R. Browning. 2016. Design Structure Matrix Extensions and Innovations:
A Survey andNewOpportunities. IEEE Transactions on EngineeringManagement
63, 1 (2016), 27–52.

[11] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. 2007. Pattern-
Oriented Software Architecture, Volume 4: A Pattern Language for Distributed
Computing. Wiley.

[12] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. 1996. Pattern-Oriented Software Architecture - Volume 1: A System
of Patterns. Wiley Publishing.

[13] Marcelo Cataldo, Patrick A. Wagstrom, James D. Herbsleb, and Kathleen M. Car-
ley. 2006. Identification of Coordination Requirements: Implications for the De-
sign of Collaboration and Awareness Tools. In Proceedings of the 2006 20th An-
niversary Conference on Computer Supported Cooperative Work (Banff, Alberta,
Canada) (CSCW ’06). Association for Computing Machinery, New York, NY,
USA, 353–362. https://doi.org/10.1145/1180875.1180929

[14] Anthony Cleve, Maxime Gobert, LoupMeurice, JeromeMaes, and Jens H.Weber.
2015. Understanding database schema evolution: A case study. Sci. Comput.
Program. 97 (2015), 113–121. https://doi.org/10.1016/j.scico.2013.11.025

[15] Anthony Cleve and Jean-Luc Hainaut. 2006. Co-transformations in Database
Applications Evolution. In Generative and Transformational Techniques in Soft-
ware Engineering: International Summer School, GTTSE 2005. Springer Berlin Hei-
delberg, 409–421. https://doi.org/10.1007/11877028_17

[16] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. 2013. Automat-
ing the Database Schema Evolution Process. The VLDB Journal 22, 1 (2013),
73–98.

[17] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. 2013. Automat-
ing the database schema evolution process. VLDB J. 22, 1 (2013), 73–98.

[18] Carlo A. Curino, Letizia Tanca, Hyun J. Moon, and Carlo Zaniolo. 2008. Schema
evolution in Wikipedia: Toward a Web Information System Benchmark. In Pro-
ceedings of the Tenth International Conference on Enterprise Information Systems.
323–332.

[19] Michael de Jong, Arie van Deursen, and Anthony Cleve. 2017. Zero-Downtime
SQLDatabase Schema Evolution for Continuous Deployment. In 39th IEEE/ACM
International Conference on Software Engineering: Software Engineering in Prac-
tice Track (ICSE-SEIP ’17). IEEE Computer Society, 143–152. https://doi.org/10.
1109/ICSE-SEIP.2017.5

[20] J. Delplanque, A. Etien, N. Anquetil, and O. Auverlot. 2018. Relational Data-
base Schema Evolution: An Industrial Case Study. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 635–644. https:
//doi.org/10.1109/ICSME.2018.00073

[21] L. Deruelle, M. Bouneffa, N. Melab, and H. Basson. 2001. A change propaga-
tion model and platform for multi-database applications. In Proceedings IEEE
International Conference on Software Maintenance. ICSM 2001. 42–51. https:
//doi.org/10.1109/ICSM.2001.972710

[22] Konstantinos Dimolikas, Apostolos V. Zarras, and Panos Vassiliadis. 2020. A
Study on the Effect of a Table’s Involvement in Foreign Keys to its Schema
Evolution. In Conceptual Modeling, Gillian Dobbie, Ulrich Frank, Gerti Kappel,
Stephen W. Liddle, and Heinrich C. Mayr (Eds.). Springer International Publish-
ing, 456–470.

[23] Santiago Dueñas, Valerio Cosentino, Gregorio Robles, and Jesus M. Gonzalez-
Barahona. 2018. Perceval: Software Project Data at Your Will. In Proceedings of
the 40th International Conference on Software Engineering: Companion Proceeed-
ings (ICSE ’18). ACM, 1–4. https://doi.org/10.1145/3183440.3183475

[24] Jérôme Fink, Maxime Gobert, and Anthony Cleve. 2020. Adapting Queries
to Database Schema Changes in Hybrid Polystores. In 20th IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM ’20). IEEE,
127–131. https://doi.org/10.1109/SCAM51674.2020.00019

[25] Martin Fowler. 2012. Patterns of Enterprise Application Architecture: Pattern En-
terpr Applica Arch. Addison-Wesley.

[26] Erich Gamma, Richard Helm, Ralph Johnson, and JohnM. Vlissides. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software (1 ed.). Addison-Wesley
Professional.

[27] S. K. Gardikiotis and N. Malevris. 2006. DaSIAn: A Tool for Estimating the
Impact of Database Schema Modifications on Web Applications. In IEEE In-
ternational Conference on Computer Systems and Applications, 2006. 188–195.
https://doi.org/10.1109/AICCSA.2006.205088

[28] Spyridon K. Gardikiotis and Nicos Malevris. 2009. A two-folded impact analysis
of schema changes on database applications. Int. J. Autom. Comput. 6, 2 (2009),
109–123. https://doi.org/10.1007/s11633-009-0109-4

[29] Christoph Gote, Ingo Scholtes, and Frank Schweitzer. 2019. Git2net: Mining
Time-Stamped Co-Editing Networks from Large Git Repositories. In Proceedings
of the 16th International Conference on Mining Software Repositories (Montreal,
Quebec, Canada) (MSR ’19). IEEE Press, 433–444. https://doi.org/10.1109/MSR.
2019.00070

[30] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The elements of
statistical learning: data mining, inference and prediction (2 ed.). Springer.

[31] Kai Herrmann, Hannes Voigt, Andreas Behrend, Jonas Rausch, and Wolfgang
Lehner. 2017. Living in Parallel Realities: Co-Existing Schema Versions with a
Bidirectional Database Evolution Language. In ACM SIGMOD. 1101–1116.

[32] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt. 2009. Automatic clas-
sication of large changes into maintenance categories. In 2009 IEEE 17th Inter-
national Conference on Program Comprehension. 30–39. https://doi.org/10.1109/
ICPC.2009.5090025

[33] Amornrat Jaimoon and Taratip Suwannasart. 2019. Impact Analysis of Database
Schema Changes on Hibernate Source Code and Test Cases. In Proceedings of the
2019 3rd International Conference on Software and E-Business (ICSEB 2019). ACM,
120–123. https://doi.org/10.1145/3374549.3374579

[34] Mitchell Joblin, Sven Apel, and Wolfgang Mauerer. 2017. Evolutionary trends of
developer coordination: a network approach. Empirical Software Engineering 22
(2017), 2050–2094. https://doi.org/10.1007/s10664-016-9478-9

[35] Mitchell Joblin, Wolfgang Mauerer, Sven Apel, Janet Siegmund, and Dirk Riehle.
2015. From Developer Networks to Verified Communities: A Fine-Grained Ap-
proach. In Proceedings of the 37th International Conference on Software Engineer-
ing - Volume 1 (ICSE ’15). IEEE Press, 563–573.

[36] Hassan Khosravi and Recep Colak. 2009. Exploratory Analysis of Co-Change
Graphs for Code Refactoring.. In Canadian Conference on AI (2009-05-18) (Lec-
ture Notes in Computer Science, Vol. 5549), Yong Gao and Nathalie Japkow-
icz (Eds.). Springer, 219–223. http://dblp.uni-trier.de/db/conf/ai/ai2009.html#
KhosraviC09

[37] Martin Kleppmann. 2016. Designing Data-Intensive Applications: The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems. O’Reilly.

[38] Max Kuhn. 2020. caret: Classification and Regression Training. https://CRAN.R-
project.org/package=caret R package version 6.0-86.

[39] Dien-Yen Lin and Iulian Neamtiu. 2009. Collateral Evolution of Applications and
Databases. In Proceedings of the Joint International and Annual ERCIMWorkshops
on Principles of Software Evolution (IWPSE) and Software Evolution (Evol) Work-
shops (IWPSE-Evol ’09). ACM, 31–40. https://doi.org/10.1145/1595808.1595817

[40] M. Linares-Vásquez, B. Li, C. Vendome, and D. Poshyvanyk. 2015. How do De-
velopers Document Database Usages in Source Code?. In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 36–41. https:
//doi.org/10.1109/ASE.2015.67

[41] S Martin-Haugh, S Kluth, R Seuster, S Snyder, E Obreshkov, S Roe, P Sherwood,
and GA Stewart. 2017. C++ software quality in the ATLAS experiment: tools and
experience. Journal of Physics: Conference Series 898 (oct 2017), 072011. https:
//doi.org/10.1088/1742-6596/898/7/072011

[42] A. Maule, W. Emmerich, and D. Rosenblum. 2008. Impact analysis of database
schema changes. In 2008 ACM/IEEE 30th International Conference on Software
Engineering. 451–460. https://doi.org/10.1145/1368088.1368150

[43] TomMens and Serge Demeyer (Eds.). 2008. Software Evolution. Springer. https:
//doi.org/10.1007/978-3-540-76440-3

[44] T. Menzies, L. Minku, and F. Peters. 2015. The Art and Science of Analyzing
Software Data; Quantitative Methods. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 2. 959–960. https://doi.org/10.1109/
ICSE.2015.306

[45] L. Meurice, C. Nagy, and A. Cleve. 2016. Detecting and Preventing Program
Inconsistencies under Database Schema Evolution. In 2016 IEEE International
Conference on Software Quality, Reliability and Security (QRS). 262–273. https:
//doi.org/10.1109/QRS.2016.38

[46] Ferenc Moksony. 1999. Small Is Beautiful: The Use and Interpretation of 𝑅2 in
Social Research. Szociologiai Szemle (01 1999), 130–138.

12

https://www.doctrine-project.org/
https://www.scitools.com/
https://doi.org/10.1109/MSR.2009.5069475
https://doi.org/10.1109/MSR.2009.5069475
https://doi.org/10.1002/smr.233
https://doi.org/10.1145/1180875.1180929
https://doi.org/10.1016/j.scico.2013.11.025
https://doi.org/10.1007/11877028_17
https://doi.org/10.1109/ICSE-SEIP.2017.5
https://doi.org/10.1109/ICSE-SEIP.2017.5
https://doi.org/10.1109/ICSME.2018.00073
https://doi.org/10.1109/ICSME.2018.00073
https://doi.org/10.1109/ICSM.2001.972710
https://doi.org/10.1109/ICSM.2001.972710
https://doi.org/10.1145/3183440.3183475
https://doi.org/10.1109/SCAM51674.2020.00019
https://doi.org/10.1109/AICCSA.2006.205088
https://doi.org/10.1007/s11633-009-0109-4
https://doi.org/10.1109/MSR.2019.00070
https://doi.org/10.1109/MSR.2019.00070
https://doi.org/10.1109/ICPC.2009.5090025
https://doi.org/10.1109/ICPC.2009.5090025
https://doi.org/10.1145/3374549.3374579
https://doi.org/10.1007/s10664-016-9478-9
http://dblp.uni-trier.de/db/conf/ai/ai2009.html#KhosraviC09
http://dblp.uni-trier.de/db/conf/ai/ai2009.html#KhosraviC09
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://doi.org/10.1145/1595808.1595817
https://doi.org/10.1109/ASE.2015.67
https://doi.org/10.1109/ASE.2015.67
https://doi.org/10.1088/1742-6596/898/7/072011
https://doi.org/10.1088/1742-6596/898/7/072011
https://doi.org/10.1145/1368088.1368150
https://doi.org/10.1007/978-3-540-76440-3
https://doi.org/10.1007/978-3-540-76440-3
https://doi.org/10.1109/ICSE.2015.306
https://doi.org/10.1109/ICSE.2015.306
https://doi.org/10.1109/QRS.2016.38
https://doi.org/10.1109/QRS.2016.38

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

ESEC/FSE’21, August 23–27, Athens, Greece

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

[47] Hyun Jin Moon, Carlo Curino, MyungWon Ham, and Carlo Zaniolo. 2009.
PRIMA: Archiving and querying historical data with evolving schemas. In ACM
SIGMOD. 1019–1022.

[48] Ludvig Renbo Olsen and Benjamin Hugh Zachariae. 2021. cvms: Cross-Validation
for Model Selection. https://CRAN.R-project.org/package=cvms R package ver-
sion 1.2.1.

[49] S. Panichella, G. Bavota, M. D. Penta, G. Canfora, and G. Antoniol. 2014. How
Developers’ Collaborations Identified fromDifferent Sources Tell Us about Code
Changes. In 2014 IEEE International Conference on SoftwareMaintenance and Evo-
lution. 251–260. https://doi.org/10.1109/ICSME.2014.47

[50] Dong Qiu, Bixin Li, and Zhendong Su. 2013. An Empirical Analysis of the Co-
evolution of Schema and Code in Database Applications. In Proc. ESEC/FSE’13.

[51] R Core Team. 2021. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. https://www.R-project.org/

[52] Raghu Ramakrishnan and Johannes Gehrke. 2002. Database Management Sys-
tems (3 ed.). McGraw-Hill, Inc.

[53] R. P. Reyes Ch., O. Dieste, E. R. Fonseca C., and N. Juristo. 2018. Statistical Errors
in Software Engineering Experiments: A Preliminary Literature Review. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). 1195–
1206. https://doi.org/10.1145/3180155.3180161

[54] Marko Rosenmüller, Christian Kästner, Norbert Siegmund, Sagar Sunkle, Sven
Apel, Thomas Leich, and Gunter Saake. 2009. SQL á la Carte – Toward Tailor-
made Data Management. In In Datenbanksysteme in Business, Technologie und
Web – Fachtagung des GI-Fachbereichs Datenbanken und Informationssysteme,
volume P-144 of GI-Edition – LNI.

[55] Neeraj Sangal, Ev Jordan, and Vineet Sinha. 2005. Using dependency models to
manage complex software architecture. ACM Sigplan Notices (2005).

[56] Stephen R. Schach, Bo Jin, Liguo Yu, Gillian Z. Heller, and A. Jefferson Offutt.
2003. Determining the Distribution of Maintenance Categories: Survey versus
Measurement. Empirical Software Engineering 8, 4 (2003), 351–365. http://dblp.
uni-trier.de/db/journals/ese/ese8.html#SchachJYHO03

[57] Stefanie Scherzinger, Wolfgang Mauerer, and Haridimos Kondylakis. 2021. De-
Binelle: Semantic Patches for Coupled Database-Application Evolution. In Pro-
ceedings of the 37th IEEE International Conference on Data Engineering. Demo
paper.

[58] Stefanie Scherzinger and Sebastian Sidortschuck. 2020. An Empirical Study on
the Design and Evolution of NoSQL Database Schemas. In Conceptual Modeling -
39th International Conference (ER) (Lecture Notes in Computer Science, Vol. 12400).

Springer, 441–455.
[59] Ingo Scholtes, Pavlin Mavrodiev, and Frank Schweitzer. 2016. From Aristotle

to Ringelmann: a large-scale analysis of team productivity and coordination in
Open Source Software projects. Empir. Softw. Eng. 21, 2 (2016), 642–683.

[60] D. Sjøberg. 1993. Quantifying schema evolution. Information & Software Tech-
nology 35, 1 (1993), 35–44. https://doi.org/10.1016/0950-5849(93)90027-Z

[61] Ioannis Skoulis, Panos Vassiliadis, and Apostolos V. Zarras. 2015. Growing Up
with Stability. Information Systems 53, C (2015), 363–385.

[62] Panos Vassiliadis. 2021. Profiles of Schema Evolution in Free Open Source Soft-
ware Projects. In Proceedings of the 37th IEEE International Conference on Data
Engineering.

[63] Panos Vassiliadis, Michail-Romanos Kolozoff, Maria Zerva, and Apostolos V.
Zarras. 2019. Schema evolution and foreign keys: A study on usage, heartbeat
of change and relationship of foreign keys to table activity. Computing 101, 10
(2019), 1431–1456.

[64] Panos Vassiliadis and Apostolos V. Zarras. 2017. Schema Evolution Survival
Guide for Tables: Avoid Rigid Childhood and You’re En Route to a Quiet Life. J.
Data Semant. 6, 4 (2017), 221–241. https://doi.org/10.1007/s13740-017-0083-x

[65] Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019. Synthesizing
Database Programs for Schema Refactoring. In Proc. PLDI 2019. 286–300. https:
//doi.org/10.1145/3314221.3314588

[66] Sunny Wong, Yuanfang Cai, Giuseppe Valetto, Georgi Simeonov, and Kan-
warpreet Sethi. 2009. Design Rule Hierarchies and Parallelism in Software De-
velopment Tasks.. In ASE. IEEE Computer Society, 197–208. http://dblp.uni-
trier.de/db/conf/kbse/ase2009.html#WongCVSS09

[67] ShengfengWu and Iulian Neamtiu. 2011. Schema Evolution Analysis for Embed-
ded Databases. In 2011 IEEE 27th International Conference on Data Engineering
Workshops.

[68] Tao Xie, Suresh Thummalapenta, David Lo, and Chao Liu. 2009. Data Mining
for Software Engineering. IEEE Computer 42, 8 (August 2009), 35–42.

[69] S. S. Yau, J. S. Collofello, and T. MacGregor. 1978. Ripple effect analysis of soft-
ware maintenance. In The IEEE Computer Society’s Second International Com-
puter Software and Applications Conference, 1978. COMPSAC ’78. 60–65. https:
//doi.org/10.1109/CMPSAC.1978.810308

[70] Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller.
2004. Mining Version Histories to Guide Software Changes. In Proceedings of the
26th International Conference on Software Engineering (ICSE ’04). IEEE Computer
Society, 563–572.

13

https://CRAN.R-project.org/package=cvms
https://doi.org/10.1109/ICSME.2014.47
https://www.R-project.org/
https://doi.org/10.1145/3180155.3180161
http://dblp.uni-trier.de/db/journals/ese/ese8.html#SchachJYHO03
http://dblp.uni-trier.de/db/journals/ese/ese8.html#SchachJYHO03
https://doi.org/10.1016/0950-5849(93)90027-Z
https://doi.org/10.1007/s13740-017-0083-x
https://doi.org/10.1145/3314221.3314588
https://doi.org/10.1145/3314221.3314588
http://dblp.uni-trier.de/db/conf/kbse/ase2009.html#WongCVSS09
http://dblp.uni-trier.de/db/conf/kbse/ase2009.html#WongCVSS09
https://doi.org/10.1109/CMPSAC.1978.810308
https://doi.org/10.1109/CMPSAC.1978.810308

	Abstract
	1 Introduction
	2 Related Work
	2.1 Dependency and Coupling Mechanisms
	2.2 Databases and Software Engineering
	2.3 Database Evolution

	3 Research Design
	3.1 Reference Projects
	3.2 Analysis Process
	3.3 Evolution scenarios

	4 Hypothesis 1
	5 Hypothesis 2
	6 Hypothesis 3
	7 Threats to validity
	8 Discussion
	9 Conclusion
	References

