
Tell-Tale Tail Latencies:
Pitfalls and Perils in Database Benchmarking

Michael Fruth1[0000−0003−2933−5093], Stefanie Scherzinger1,
Wolfgang Mauerer2,3[0000−0002−9765−8313], and Ralf Ramsauer2

1 University of Passau, 94032 Passau, Germany
{michael.fruth,stefanie.scherzinger}@uni-passau.de

2 Technical University of Applied Sciences Regensburg, 93058 Regensburg, Germany
{wolfgang.mauerer,ralf.ramsauer}@othr.de

3 Siemens AG, Corporate Research, Otto-Hahn-Ring 6, 81739 Munich, Germany

Abstract. The performance of database systems is usually characterised
by their average-case (i.e., throughput) behaviour in standardised or de-
facto standard benchmarks like TPC-X or YCSB. While tails of the latency
(i.e., response time) distribution receive considerably less attention, they
have been identified as threat to overall system performance: In large-
scale systems, even a fraction of requests delayed can build up into delays
perceivable by end users.
To eliminate large tail latencies from database systems, the ability to
faithfully record them, and likewise pinpoint them to the root causes, is
imminently required. In this paper, we address the challenge of measur-
ing tail latencies using standard benchmarks, and identify subtle perils
and pitfalls. In particular, we demonstrate how standard benchmarking
approaches can substantially distort tail latency observations, and discuss
how the discovery of such problems is inhibited by the common focus on
throughput performance. We make a case for purposefully re-designing
database benchmarking harnesses based on these observations to arrive
at faithful characterisations of databases from multiple important angles.

Keywords: Database benchmarks · Tail latencies · Benchmark harness.

1 Introduction

Measuring performance is an essential ingredient of evaluating and optimising
database management systems, and a large fraction of published research (e.g., [3,
19, 20, 25, 26, 29, 33]) is driven by guidance from the collection of benchmarks
provided by the Transaction Processing Performance Council [48], or commercial
de-facto standards like the Yahoo! Cloud Serving Benchmark (YCSB) [10].

These benchmarks usually focus on measuring throughput (i.e., number of
operations performed in a given time interval), or latency (i.e., time from submit-
ting a request to receiving the result, usually characterised by the 95th or 99th
percentile [?] of the response time distribution). However, it is known that high
latency episodes rarer than events in the 99th percentile may severely impact the



2 M. Fruth et al.

whole-system performance [12], including important use-cases like interactive web
search [4]—even if they do not receive much attention in standard performance
evaluations. In this article, we focus on properly characterising tail latencies in
database benchmarking, and unearth shortcomings in popular benchmark setups.

We find that tail latencies observed in the ubiquitous TPC-C or YCSB
benchmarks for commonly used databases often fall into the millisecond range,
but are caused by the benchmarking process itself. Since systemic optimisation
efforts are expected to require targeting microsecond latencies, aptly termed
“killer microseconds” by Barroso et al. [2], is seems evident that non-productive
perturbations that exceed such delays by three orders of magnitude make it
impossible to obtain a faithful characterisation of database performance.

We show that a popular, Java-based benchmark harness, that is, the soft-
ware setting up and executing database benchmarks [34], records latencies that
were actually imposed by its own execution environment, in particular garbage
collection in the Java virtual machine (JVM). That is, we show that significant
noise is caused by the benchmark harness itself, disturbing the measurements.
However, latencies must but pinpointed to their actual source before targeted
improvements can unfold their impact. If measured latencies are not identified as
being caused by the measurement setup, developers will inevitably fail to pin
them down, and therefore cannot address them properly.

Contributions. In this article, we claim the following contributions, based on
measuring latencies in database query evaluation, using the commonly used
benchmark harness oltpbench [11,13] with two well-accepted benchmarks (YCSB
and TPC-C) on mature database management systems (MySQL and PostgreSQL),
capturing throughput and tail latencies:
– We show that seemingly irrelevant technical details like the choice of java

virtual machine (and even the particular garbage collection mechanism)
of the benchmark dispatcher can severely distort tail latencies, increasing
maximum latencies by up to several orders of magnitude, while the usually
considered quantities median, 95th and 99th percent latencies remain largely
unperturbed.

– We carefully separate systemic noise (such as caused by the system software
stack) from the noise intrinsic to the benchmarking harness and the database
system. We succeed in identifying and isolating the latencies introduced by
the the garbage collector managing the memory for the benchmark harness.

– Based on specially crafted dummy components, we carefully characterise
upper and lower bounds on the influence of the measurement infrastructure
on the measurement itself, enabling researchers and developers to distinguish
between relevant results and source of non-productive perturbations caused
by the measurement itself.

Overall, we systematically build a case for adapting benchmarking harnesses to
faithfully capturing tail latencies.

Structure. This paper is organised as follows. We review the preliminaries in
Section 2. We then present our experiments in Section 3, which we further discuss



Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking 3

in Section 4. We state possible threats to validity in Section 5, and review related
work in Section 6. We conclude with Section 7.

2 Preliminaries

2.1 Database Benchmarks

TPC-C [47], defined in 1992, is an industry-standard measure for OLTP workloads.
The benchmark models order processing in warehouses.

The Yahoo! Cloud Serving Benchmark (YCSB) [10] is an established big
data benchmark. YCSB handles lightweight transactions, as most operations
access single record only. This results in low latencies of requests compared to a
benchmark such as TPC-C.

The No Operation (NoOp) benchmark is a simplistic baseline for comparison,
as it sends an empty statement (e.g., the semicolon command for PostgreSQL),
which has to be acknowledged by the database system. NoOp benchmarks can be
used to quantify the raw measurement overhead of the benchmark harness. The
NoOp benchmark also can be interpreted to represent the minimum client-server
round-trip time of a statement.

2.2 The OLTPBench Benchmark Harness

A benchmark harness is a toolsuite that provides the functionality to benchmark
a software and/or hardware system. Typically, a benchmark harness contains
components that generate the payload data, execute the database workload,
monitor and collect data, and even visualise the measured results [34].

For instance, the harness OLTPBench [11,13] is a popular [24] academic open
source project [38] written in Java. At the time of writing, the harness implements
19 benchmarks, including the three benchmarks introduced above. At the time
of writing, Google Scholar reports over 280 citations of the full article [13] and
the project is rated with over 330 stars on GitHub [38] and almost 250 forks.

2.3 JVM and Garbage Collectors

The Java Platform is the specification of a programming language and runtime
environment and libraries, which is implemented by various Java Virtual Machines
(JVMs). The open source implementation OpenJDK [40] has been used as
reference implementation since Java Version 7 [41].

The Java Virtual Machine (JVM) is responsible for all aspects of executing
a Java application, including memory management and communication with
the operating system. The JVM is also a specification [31], with different imple-
mentations. The two most common implementations are the HotSpot JVM [40]
by OpenJDK and the OpenJ9 JVM [39], an implementation maintained by the
Eclipse Foundation.

The JVM has the concept of safepoints. While implementations differ between
JVMs, in general, an executing thread is in a safepoint when its state is well



4 M. Fruth et al.

described. Operations such as executing Java Native Interface (JNI) code require
a local safepoint, whereas others, such as certain garbage collection operations
require a global safepoint. A global safepoint is a Stop-The-World (STW) pause,
as all threads have to reach a safepoint and do not proceed until the JVM so
decides. The latency of a STW pause is the time from the first thread reaches its
safepoint until the last thread reaches its safepoint plus the time of performing
the operation that requires STW.

Java is a garbage-collected language. The garbage collector (GC) is an inte-
grated component of any JVM and responsible for managing the heap memory,
i.e., removing unused objects [31]. These housekeeping tasks can follow different
strategies, that target different optimisation targets, such as optimising for low
latency. The GC is configured at JVM startup, and additional tuneables can be
applied to both, the JVM and the GC of choice. This allows for optimising a Java
applicatino for peak performance based on its environmental conditions, such
as hardware aspects or the specific area of use. However, most GC implemen-
tations [7, 8, 15,42,45] require a global safepoint during their collection phases,
which introduces indeterministic latencies. Azul’s C4 GC [9,46] overcomes the
issue of STW pauses by exploiting read barriers and virtual memory operations,
provided by custom hardware or a Linux kernel module, for sustained pauseless
garbage collection.

3 Experiments

In the following, we report on the results of our experiments with OLTPBench. As
a baseline, we execute a minimal database workload (with the NoOp benchmark),
while de-facto disabling the garbage collector (using the HotSpot JVM configured
with the Epsilon garbage collector). This is designed to reveal additional latencies
imposed by the benchmark harness. We further configure the harness with special-
purpose garbage collectors designed for different scenarios, e.g., which cause only
low latencies, and contrast this with the default garbage collectors.

Experimental Setup. All experiments are performed with OLTPBench, executing
the built-in NoOp, TPC-C and YCSB against PostgreSQL and MariaDB. For
NUMA awareness, the database server processes as well as the benchmark
processes are pinned to CPUs of the same NUMA node.

Benchmark Configuration. Each benchmark is configured with a 10-second
warmup phase, to warmup the database caches, buffer pools etc., followed by a
60-second measurement phase. The isolation level is set to serialisable and the
requests are sent in a closed-loop fashion (a new request will not be sent until the
response of the previous request has been received and processed). The requests
are issued by ten worker threads, i.e., ten parallel connections.

TPC-C is configured with a scale factor of ten, resulting in ten independent
warehouses. Each transaction relates to a specific warehouse using the warehouse
ID (primary key). The warehouse IDs are distributed uniformly over all available



Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking 5

worker threads, hence each worker thread executes transactions only on its
dedicated warehouse. This leads to a distribution of one worker per warehouse.
OLTPBench implemented TPC-C as “good faith” and therefore deviates from
the TPC-C specification in some places [13]4.

For YCSB5, we use a scale factor of 1,200, resulting in a table with 1.2 million
records. The workload distribution is as follows: 50% read, 5% insert, 15% scan,
10% update, 10% delete and 10% read-modify-write transactions, while all but
scan access a single record based on the primary key. The primary key selection
is based on a Zipfian distribution. All these values are default settings provided
by OLTPBench.

In the current implementation of OLTPBench, the NoOp benchmark is
only supported by PostgreSQL. In case of an empty query, PostgreSQL will
acknowledge the query and report successful execution. MariaDB instead reports
an empty query error, which results in a Java runtime exception on benchmark
side, which, in turn, results in different code paths, compared with PostgreSQL.
To promote comparable behavior, we enhanced both, MariaDB and OLTPBench:
In OLTPBench, we disabled explicit commits after transactions6. Additionally,
we enhanced MariaDB to interprete the empty statement ’;’ internally as a
comment (--), i.e., as a NoOp.

Java and GC Settings. To run OLTPBench, we use Java version 16.0.1 (Open-
JDK). As JVMs, we measure with both, the HotSpot JVM and once OpenJ9
JVM. For the HotSpot JVM, we used the garbage collectors G1 (default) [42],
Shenandoah [7], ZGC [8] and Epsilon [45], a pseudo garbage collector, that leaves
all objects in memory and performs no garbage collection at all. For OpenJ9,
we used gencon (default) [15] and metronome [15]. Table 1 provides an overview
about the strategies of the used GCs. We chose the default GC for HotSpot JVM
and OpenJ9 JVM as they are probably the starting point for most measurements
done with a Java application. In addition, we choose all low latency GC strategies
with low STW pauses for precise latency measurements.

Experiment Execution. OLTPBench sets per default a maximum heap size of 8
GiB (JVM option -Xmx8G), which we also used for our experiments, with the
exception of Epsilon GC. As the Epsilon GC does not perform garbage collection, RR: Als Leser

würde ich eine
Erklärung für die
8 GB erwarten.
Warum nicht
6.5GB?

we need to enlarge the heap size to keep a large amount of objects. In total, the
Epsilon GC requires 180 GiB of heap space available of which 160 GiB were
pre-allocated upon startup. During the 60-second measurement, the 160 GiB
were sufficient and therefore no latencies were introduced due to an increase of
the heap. The 20 GB buffer for creating the result files was partly needed by
OLTPBench.

4 For example, TPC-C defines ten terminals (workers) per warehouse and each customer
runs through a thinking time at one terminal, which is also eliminated by OLTPBench.

5 Caused by a runtime error with Java versions ≥ 9, we had to increase the versions of
the jaxb-api and jaxb-impl dependencies used by OLTPBench from 2.3.0 to 2.3.1.

6 A commit after an empty query does not have any effects on execution



6 M. Fruth et al.

Table 1. Garbage collectors for the HotSpot
JVM and OpenJ9 JVM with their area of
specialisation.

JVM GC Design

H
ot

S
p

o
t

G1 Balance between
throughput and
latency.

Z Low latency.
Shenandoah Low latency.
Epsilon Experimental setting.

No GC tasks are per-
formed, except for in-
creasing heap.

J
9 gencon Transactional appli-

cations with short-
lived objects.

metronome Low latency.

In order to log latencies introduced
by the JVM, we use the unified logging
mechanism, introduced in HotSpot
JVM for Java 9 [28]. HotSpot JVM
allows for logging all safepoint events,
including the garbage collection events.
OpenJ9 JVM also supports unified log-
ging, but only supports garbage col-
lection events and thus no safepoint
events [14]. Here, we log the events
reported by the GC and use these la-
tencies as overhead from the JVM. We
refer to Section 5 for a discussion of
this tradeoff.RR: Verwenden

wir das Feature
nicht, um zu be-
weisen, dass un-
sere Events wirk-
lich aus dem GC
kommen? Ich
würde schreiben,
dass das lediglich
ein Zusatz ist,
den wir verwen-
den, um unsere
Hypothese zu
bestätigen. An-
dernfalls kann
man uns angreifen
und sagen: Naja,
dieses Logging
macht ja auch
wieder Latenz.

Execution Platform. All measure-
ments are performed on a Dell Pow-
erEdge R640, with two Intel Gold
6248R CPUs (24 cores per CPU, 3.0
GHz) and 384 GB of main memory. To avoid distortions from CPU frequency
transitions, we disable Intel®™ Turbo Boost®™, and operate all cores in the per-
formance P-State for a permanent core frequency of 3.0 GHz. Because of resource
contention, simultaneous multithreading (SMT) is known to cause undesired
side-effects on low-latency real-time systems [32]. Hence, we disable SMT.

To avoid cross-NUMA effects, OLTPBench as well as database server processes
execute on 22 cores of the same NUMA node: OLTPbench and the database server
(either MariaDB or PostgreSQL) exclusively execute on 11 cores, respectively.
This ensures that one worker of the benchmark, which is pinned to a dedicated
CPU, is connected to one worker of the database, which is pinned to a dedicated
CPU as well. The remaining two cores of the NUMA node are reserved for
remaining processes of the system.

The server runs Arch Linux with Kernel version 5.12.5. The benchmark as
well as the database server are compiled from sources. For OLTPBench, we use
git hash #6e8c04f, for PostgreSQL Version 13.3, git hash #272d82ec6f and for
MariaDB Version 10.6, git hash #609e8e38bb0.

3.1 Results

As mentioned before, we evaluate MariaDB and PostgreSQL. Our evaluation
shows that the results are virtually independent of the DBMS. Hence, and due to
the limited size of the article, we present the results for MariaDB. For PostgreSQL,
we refer to our supplementary website for the detailed results with PostgreSQL7.
For the final paper, we will also provide a full reproducibility package containing all
our scripts and measured data for a complete reproducibility of our experiments.

7 https://github.com/sdbs-uni-p/tpctc2021



Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking 7

NoOp YCSB TPC−C

G1 Z

Shenandoah

Epsilo
n

genco
n

metro
nome G1 Z

Shenandoah

Epsilo
n

genco
n

metro
nome G1 Z

Shenandoah

Epsilo
n

genco
n

metro
nome

1

3

10

100

500

Garbage Collector

R
eq

ue
st

s 
[k

] /
 S

ec
on

d

Fig. 1. Database throughput for MariaDB, in thousand requests per second for bench-
marks NoOp, YCSB and TPC-C, and different JVM/GC configurations of OLTPBench.
Throughput is affected marginally by the choice of JVM, but not the GC.

We follow a top-down approach: We first measure latencies on the level of
single transations, under variation of different JVM and GC configurations with
the NoOp, YCSB, and TPC-C benchmarks. We then characterise the latency
distributions, and systematically investigate on the latency long tail.

Throughput. Figure 1 shows the throughput measured in thousand requests
per second, for different benchmarks, JVMs, and GCs. For TPC-C, throughput
is commonly reported as NewOrder transactions per minute (tpmC), but we
deviate for a better comparability between the different benchmarks.

For all three benchmarks, Figure 1 reports a difference in performance between
the two JVMs: Compared to OpenJ9 JVM, HotSpot JVM has about 17% – 28%
more throughput for the NoOp benchmark, whereas it is about 5% – 18% for
YCSB and only about 5% more for the TPC-C benchmark.

Naturally, the choice of JVM for OLTPBench has a stronger influence for
benchmarks with in which comparatively little time is spent on the database
side. To put this in context: By executing the NoOp benchmark with about 500K
requests per second, we spend much more time in the process of OLTPBench
compared to the TPC-C benchmark with only 3K requests per second.

Latency distribution. The distribution of latencies reported by OLTPBench
is characterised as boxplots in Figure 2.

Overall, there is little variation in the median latencies within a benchmark.
Comparing the median latencies of the two JVMs for the NoOp benchmark, we
see a lower median latency for HotSpot JVM than for OpenJ9 JVM. This is a
mere difference of 0.003 ms or 0.004 ms, based on about 500k requests per second.
As the NoOp benchmark generates only a small load on the database side, the
maximum latencies reported are candidates for latencies introduced by the Java



8 M. Fruth et al.

50.7

50.5

62

13.4

53.1

56.3

13.8

32.8

63

4.4

32.6

63

30.2

32.8

65.9

9.18

49.3

64.6

T
P

C
−

C
Y

C
S

B
N

oO
p

0.01 0.1 1 10 100

Latency [ms]

B
en

ch
m

ar
k

Garbage Collector
G1

Z

Shenandoah

Epsilon

gencon

metronome

Percentile 100th 99th 95th 0th

Fig. 2. The latency distributions measured by OLTPBench for three benchmarks,
visualised as box plots. Key percentiles are highlighted.

environment of the benchmark harness. As can be expected, Epsilon GC has the
lowest maximum latency for the NoOp benchmark.

The minimum (0th percentile) and maximum (100th percentile) latencies,
as well as the 95th and 99th latency percentiles, are separately marked. The
absolute value of the maximum latency is also labeled.

The YCSB benchmark shows strong variance in maximum latencies, depending
on the garbage collector used. For GCs G1, Z and gencon, a maximum latency of
around 50 ms is recorded, whereas the other GCs display a maximum latency of
about 30 ms. We inspect these latencies more closely in the following. Nevertheless,
the distribution of the latencies is rather uniform for all six garbage collectors,
except the 99th percentile latency, where OpenJ9 latencies exceed that of HotSpot.

The different JVM/GC configurations result in near-identical latency distri-
butions for the TPC-C benchmark: Due to the larger share of time spent on the
database side (compared to the other benchmarks), the latencies introduced on
side of the benchmark harness do not weigh in as much in comparison.



Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking 9

Latency time series. Figures 3 through 5 show time series plots for the
benchmarks NoOp, YCSB, and TPC-C. Red, labeled triangles mark minimum and
maximum latencies, as observed by OLTPBench. In order to prevent overplotting,
we sampled the latencies except for extreme values. Ochre dots represent sampled,
normal observations. A latency is considered an extreme value and displayed
as grey dot, if it is outside a pre-defined range. We define benchmark-specific
sampling rates and extreme value ranges, as detailed further below.

We extract latencies from the JVM logs and superimpose them as black dots.
In benchmarks with mixed, randomised workloads, we cannot associate a given
JVM latency with a specific query, so we visualise all JVM latencies. The red line
shows a sliding mean window computed over 1,000 measuring points to make
latency fluctuations more visible.

The time series plots for the YCSB and TPC-C benchmark are provided for
selected queries only. We refer to our online supplement (see Footnote 7) for the
full set of charts, which, as our readers will notice, do not reveal new insights.
Similarly, we do not visualise the Shenandoah GC as it behaves similar to the Z
GC, and metronome GC, with a similar latency pattern as gencon GC.

NoOp Benchmark. The latency time series for the NoOp benchmark is shown in
Figure 3. To avoid overplotting, we used a sampling rate of 0.0001% for standard
values, i.e., values in between the 0.025th and 99.975th percentile. @Wolfgang, is it “sta-

tistically safe” to

phrase ist like this?

OLTPBench, executed with the Epsilon GC, shows that this setup has the
lowest latency possible, the JVM is only active for a short time at the very end.
This measurement shows us that regular outliers appear at about 1 ms and can
be used as a reference for comparison with other GCs. The measurement of the
GC G1 shows us that the GC causes the maximum latency or the tail of the
latencies. Almost each latency higher than 10 ms was introduced by the GC
because the latencies reported by OLTPBench and these reported by the JVM
show the same pattern and match each other.

YCSB Benchmark. We show the time series latency of the YCSB benchmark in
Figure 4. We report the latencies measured by the G1, Z, Epsilon and metronome
GC and selected the two transaction types ReadRecord (read transaction) and
UpdateRecord (write transaction). We used a sampling rate of 0.05% for standard
values and the 99.975th and 0.025th latency percentile are the limits for a latency
to be marked as extreme value.

The Epsilon GC is again the reference and except for the maximum latency,
all tail latencies are within the range of 1 ms and 5 ms. By comparing the
ReadRecord latencies, again the G1 GC is responsible for the tail latencies
occurring in this transaction. The write transaction shows a similar behaviour,
but here outliers on the database side are responsible for the maximum latency,
nevertheless again the G1 GC latency defines the tail.

TPC-C Benchmark. The time series latency of TPC-C is given in Figure 5. The
sampling rate of standard values of the NewOrder transaction is set to 0.05%



10 M. Fruth et al.

50.7

0.013

13.8

30.2

13.4

0.013 0.013 0.013 0.013

4.4

0.013 0.013 0.013

9.18

0.016

0.016

0.016

gencon metronome

Shenandoah Epsilon

G1 Z

0 15 30 45 60 0 15 30 45 60

0.01

0.10

1.00

10.00

0.01

0.10

1.00

10.00

0.01

0.10

1.00

10.00

Time [s]

La
te

nc
y 

[m
s]

Observation Standard Value Extreme Value GC Latency

Fig. 3. Latency time series of the NoOp benchmark. The minimum and maximum
latencies measured with OLTPBench are marked by red, labelled triangles. Grey dots
are extreme values. Ochre dots are standard observations. The latencies from the JVM
log file are superimposed in black. The red line shows the sliding mean window.

and for OrderStatus to 5%. Extreme values are marked as such if they exceed
the 99.75th percentile or subceed the 0.25th percentile.

For this particular benchmark, we cannot identify a clear influence of the
JVM. The transactions, especially the write transactions, are so heavyweight that
most of the time is spent on the database. This does not leave much time to be
spent on the benchmark side, which is be influenced by Java. Furthermore, due
to the low number of requests per second (about 3k), there has not be performed
much garbage collection as for the other benchmarks because not that many Java
objects are created which have to be cleaned up afterwards. The same applies to
the read transaction.

4 Discussion

Our experiments show that in a popular Java-based benchmark harness, the
choice of the Java environment, that is, the JVM and its GC strategy, impacts



Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking 11

18.3

0.066

49.4

0.092

14

0.066

53.1

0.091

14

0.066

0.066
0.066

32.2

0.091

12.9

0.069

32.5

0.094

G1 Z Epsilon gencon
R

eadR
ecord

U
pdateR

ecord

0 15 30 45 60 0 15 30 45 60 0 15 30 45 60 0 15 30 45 60

0.1

1.0

10.0

0.1

1.0

10.0

Time [s]

La
te

nc
y 

[m
s]

Observation Standard Value Extreme Value GC Latency

Fig. 4. Latency time series of the YCSB benchmark for a read (ReadRecord) and a
write (UpdateRecord) transactions. Labels and colors as in Figure 3.

(tail) latency measurements. By super-imposing the latencies extracted from
JVM log files on the latency time series reported by TPCBench, we can make
this connection visually apparent. By setting up a baseline experiment, with
garbage collection de-facto disabled, and a minimalist database workload, we can
successfully quantify the imposed latencies.

Naturally, for lightweight database workloads (in our experiments, YCSB),
this non-productive overhead is more noticeable in relation to the actual query
execution time. We can show that different GC strategies translate to different
patterns in the tail latencies.

Interestingly, while researchers and practitioners optimise latencies in the
realm of micro seconds [2], the latencies imposed by the benchmark harness reach
the ballpark of milliseconds. Evidently, this factor of one thousand proves these
effects are non-negligible, and deserve further study.

Our observations are replicable for PostgreSQL. We provide the data and full
set of plots on our supplementary website, along with a reproduction package.

5 Threats to Validity

We applied great care and diligence in analysing the garbage collector logs. Yet
as the logging mechanisms differ between JVMs, we must deal with some level of
uncertainty: The HotSpot JVM logs all safepoints (including, but not restricted



12 M. Fruth et al.

58.6

1.14

4.35

0.416

52.7

1.21

7.87

0.403

59.6

1.18

1.18

5.22

0.429

63.2

1.26

8.07

0.463

G1 Z Epsilon gencon
N

ew
O

rder
O

rderS
tatus

0 15 30 45 60 0 15 30 45 60 0 15 30 45 60 0 15 30 45 60

0.01

0.10

1.00

10.00

0.01

0.10

1.00

10.00

Time [s]

La
te

nc
y 

[m
s]

Observation Standard Value Extreme Value GC Latency

Fig. 5. Latency time series of the TPC-C benchmark for a read (OrderStatus) and a
write (NewOrder) transactions. Labels and colours as in Figure 3.

to garbage collection events), whereas the OpenJ9 JVM logs only the the garbage
collection events. As the GC events dominate the logged safepoint events, we treat
the reported latencies in both logs uniformly. In addition, we do not distinguish
between local and global safepoints, as local safepoints can also block a thread.

Further, the latencies reported by OLTPBench and the latencies logged by
the JVM are two distinct sources of data. As usual, data integration brings about
uncertainties, so the time series plots might be shifted minimally. In summary,
we consider the above threats to the validity of our results as minor.

One further threat to validity is that we only focus on the Java environment
of the benchmark harness, but no other possible sources of systemic noise (such
as caused by the hardware). We have diligently configured the execution platform
to reduce sources of noise (e.g., having disabled SMT). Moreover systemic noise
is typically in the range of micro seconds [2]. Since the harness-induced latencies
are in the millisecond range (exceeding them by a factor of one thousand, and
clearly traceable back to the harness), we may dismiss this threat.

6 Related Work

Databases, as core component of data-intensive systems, are important contrib-
utors to system-wide tail latency effects. Likewise, they have started to enjoy
increasing popularity in real-time scenarios like sensor networks or IoT [17,43],



Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking 13

where the most crucial service indicator is determinism and maximum latency,
instead of average-case performance. Care in controlling excessive latencies must
be exercised in all cases.

Several measures have been suggested to this end, and address software
layers above, inside and below the DBMS. For instance, optimising end-to-end
communications [19] tries to alleviate the issue from above. Specially crafted real-
time databases [1], novel scheduling algorithms in scheduling/routing queries [25,
26,44], transactional concepts [6], or query evaluation strategies [20,49], work from
inside the database. Careful tailoring of the whole software stack from OS kernel
to DB engine [30,33], or crafting dedicated operating systems [5,21–23,35,36]
to leverage the advantages of modern hardware in database system engineering
(e.g., [16, 29]), contribute to solutions from below the database.

In our experiments, we execute the well-established YCSB and TPC-C bench-
marks, which are supported by the OLTPBench harness out-of-the-box. However,
further special-purpose benchmarks have been proposed specifically for measuring
tail latencies, as they arise in embedded databases on mobile devices [37]. This
contribution is related to our work insofar as the authors also unveil sources of
measurement error, however, errors that arise when measuring the performance
of embedded databases at low throughput.

There are further benchmark harnesses from the systems research community
that specifically target tail latencies. These capture latencies across the entire
systems stack, while in the database research community, we benchmark the
database layer in isolation. Harnesses such as TailBench [27] or TreadMill [50]
define such complex application scenarios (some involving a database layer).

In its full generality, the challenge of benchmarking Java applications, in-
cluding jitter introduced by garbage collection, is discussed in [18]. We follow
the best practices recommended in this article, as we classify outliers as either
systematic or probabilistic. We present the latency distributions clearly, and have
carried out sufficiently many test runs. Different from the authors of [18], we do
not apply hypothesis tests, since we are mostly interested in latencies maxima,
rather than confidence in averaged values.

It has been reported that database-internal garbage collection [3, 29] can also
cause latency spikes. Yet in our work, we consider the effects of garbage collection
inside the test harness, rather than the database engine.

7 Conclusion and Outlook

Tail latencies in database query processing can manifest as acute pain points. As
a prerequisite to addressing possible causes in database system engineering, we
need to be able to faithfully measure these latencies in the first place. This article
shows that Java-based benchmark harnesses serve well for measuring database
throughput, or 95th or 99th percentile latencies. However, we show that intrinsic
aspects of the programming language, Java in particular, have significant impact
on the measurement when it comes to capturing tail latencies: The choice of
JVM and garbage collector in the benchmark harness is a non-negligible source



14 M. Fruth et al.

of undeterministic noise. Specifically, for database workloads composed of low-
latency queries (e.g., as in the YCSB benchmark), we risk distorted measurements
which an lead us to chasing down ghosts in database systems engineering.

We conclude that in our scenario, we need to reconsider the toolsuites and
their configuration.RR: Hmm. Würde

eher schreiben,
das man idealer-
weise Sprachen
verwenden sollte,
die minimale bzw.
keine inhärenten
Seiteneffekte
während der
Ausführung haben,
und dass dafür
Java, schlichtweg,
ungeeignet ist.
Ruhig scharf for-
mulieren. Weiter-
hin kann man hier
vorsichtig teasen,
dass sie da die
future work hinbe-
wegen wird.

References

1. Real-Time Database Systems: Architecture and Techniques, vol. 593 (2001)

2. Barroso, L., Marty, M., Patterson, D., Ranganathan, P.: Attack of the killer microsec-
onds. Commun. ACM 60(4), 48–54 (Mar 2017), https://doi.org/10.1145/3015146

3. Böttcher, J., Leis, V., Neumann, T., Kemper, A.: Scalable Garbage Collection for
In-Memory MVCC Systems. Proceedings of the VLDB Endowment 13(2), 128–141
(Oct 2019). https://doi.org/10.14778/3364324.3364328

4. Brutlag, J.: Speed Matters for Google Web Search. Available at:
https://venturebeat.com/wp-content/uploads/2009/11/delayexp.pdf (Jun
2009), blogpost

5. Cafarella, M.J., DeWitt, D.J., Gadepally, V., Kepner, J., Kozyrakis, C., Kraska,
T., Stonebraker, M., Zaharia, M.: DBOS: A Proposal for a Data-Centric Operating
System. CoRR abs/2007.11112 (Jul 2020), https://arxiv.org/abs/2007.11112

6. Chen, X., Song, H., Jiang, J., Ruan, C., Li, C., Wang, S., Zhang, G., Cheng,
R., Cui, H.: Achieving Low Tail-Latency and High Scalability for Serializ-
able Transactions in Edge Computing. In: Proceedings of the Sixteenth Eu-
ropean Conference on Computer Systems. p. 210–227. EuroSys ’21 (2021).
https://doi.org/10.1145/3447786.3456238

7. Clark, I.: Shenandoah GC. Available at: https://wiki.openjdk.java.net/display/shenandoah
(Apr 2021), v. 138. Accessed on June 13, 2021

8. Clark, I.: ZGC. Available at: https://wiki.openjdk.java.net/display/zgc (Mar 2021),
v. 124. Accessed on June 13, 2021

9. Click, C., Tene, G., Wolf, M.: The pauseless GC algorithm. In: Proceedings of the
1st International Conference on Virtual Execution Environments. pp. 46–56. VEE
’05 (2005). https://doi.org/10.1145/1064979.1064988

10. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Bench-
marking cloud serving systems with YCSB. In: Proceedings of the 1st
ACM Symposium on Cloud Computing. pp. 143–154. SoCC ’10 (2010).
https://doi.org/10.1145/1807128.1807152

11. Curino, C., Difallah, D.E., Pavlo, A., Cudré-Mauroux, P.: Benchmarking OLTP/web
databases in the cloud: the OLTP-bench framework. In: Proceedings of the Fourth
International Workshop on Cloud Data Management. pp. 17–20. CloudDB ’12
(2012). https://doi.org/10.1145/2390021.2390025

12. Dean, J., Barroso, L.A.: The Tail at Scale. Communications of the ACM 56(2),
74–80 (Feb 2013). https://doi.org/10.1145/2408776.2408794

13. Difallah, D.E., Pavlo, A., Curino, C., Cudré-Mauroux, P.: OLTP-Bench: An Exten-
sible Testbed for Benchmarking Relational Databases. Proceedings of the VLDB
Endowment 7(4), 277–288 (Dec 2013). https://doi.org/10.14778/2732240.2732246

14. Eclipse Foundation: -Xlog. Available at: https://www.eclipse.org/openj9/docs/xlog/

15. Eclipse Foundation: Garbage collection policies. Available at:
https://www.eclipse.org/openj9/docs/gc/, accessed on June 13, 2021



Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking 15

16. Fent, P., van Renen, A., Kipf, A., Leis, V., Neumann, T., Kemper, A.: Low-
Latency Communication for Fast DBMS Using RDMA and Shared Memory. In:
36th IEEE International Conference on Data Engineering. pp. 1477–1488 (2020).
https://doi.org/10.1109/ICDE48307.2020.00131

17. Garcia-Arellano, C., Roumani, H., Sidle, R., Tiefenbach, J., Rakopoulos, K., Sayyid,
I., Storm, A., Barber, R., Ozcan, F., Zilio, D., et al.: Db2 event store: a purpose-built
IoT database engine. Proceedings of the VLDB Endowment 13(12), 3299–3312
(2020)

18. Georges, A., Buytaert, D., Eeckhout, L.: Statistically Rigorous Java
Performance Evaluation. SIGPLAN Not. 42(10), 57–76 (Oct 2007).
https://doi.org/10.1145/1297105.1297033

19. Gessert, F.: Low Latency for Cloud Data Management. Ph.D. thesis, University of
Hamburg, Germany (2019), http://ediss.sub.uni-hamburg.de/volltexte/2019/9541/

20. Giannikis, G., Alonso, G., Kossmann, D.: SharedDB: Killing One Thousand Queries
with One Stone. Proceedings of the VLDB Endowment 5(6), 526–537 (Feb 2012).
https://doi.org/10.14778/2168651.2168654

21. Giceva, J.: Operating System Support for Data Management on Mod-
ern Hardware. IEEE Data Engineering Bulletin 42(1), 36–48 (2019),
http://sites.computer.org/debull/A19mar/p36.pdf

22. Giceva, J., Salomie, T.I., Schüpbach, A., Alonso, G., Roscoe, T.: COD:
Database / Operating System Co-Design. In: Sixth Biennial Conference
on Innovative Data Systems Research, Online Proceedings. CIDR’13 (2013),
http://cidrdb.org/cidr2013/Papers/CIDR13 Paper71.pdf

23. Giceva, J., Zellweger, G., Alonso, G., Roscoe, T.: Customized
OS support for data-processing. DaMoN pp. 2:1–2:6 (Jun 2016).
https://doi.org/10.1145/2933349.2933351

24. Hofmann, G., Riehle, D., Kolassa, C., Mauerer, W.: A Dual Model of Open Source
License Growth. In: Open Source Systems Conference (OSS’13). IFIP AICT, vol. 404,
pp. 245–256. Springer (2013), http://www.se-rwth.de/publications/A-Dual-Model-
of-Open-Source-License.pdf

25. Jaiman, V., Mokhtar, S.B., Quéma, V., Chen, L.Y., Riviere, E.: Héron: Tam-
ing Tail Latencies in Key-Value Stores Under Heterogeneous Workloads. In:
37th IEEE Symposium on Reliable Distributed Systems. pp. 191–200 (2018).
https://doi.org/10.1109/SRDS.2018.00030

26. Jaiman, V., Mokhtar, S.B., Rivière, E.: TailX: Scheduling Heterogeneous Multiget
Queries to Improve Tail Latencies in Key-Value Stores. In: Distributed Applications
and Interoperable Systems. Lecture Notes in Computer Science, vol. 12135, pp.
73–92 (2020). https://doi.org/10.1007/978-3-030-50323-9 5

27. Kasture, H., Sanchez, D.: Tailbench: a benchmark suite and evalua-
tion methodology for latency-critical applications. In: 2016 IEEE Interna-
tional Symposium on Workload Characterization (IISWC). pp. 1–10 (2016).
https://doi.org/10.1109/IISWC.2016.7581261

28. Larsen, S., Arvidsson, F., Larsson, M.: JEP 158: Unified JVM Logging. Available
at: https://openjdk.java.net/jeps/158, accessed on June 13, 2021

29. Lersch, L., Schreter, I., Oukid, I., Lehner, W.: Enabling Low Tail Latency on
Multicore Key-Value Stores. Proceedings of the VLDB Endowment 13(7), 1091–
1104 (Mar). https://doi.org/10.14778/3384345.3384356

30. Li, J., Sharma, N.K., Ports, D.R.K., Gribble, S.D.: Tales of the Tail: Hard-
ware, OS, and Application-Level Sources of Tail Latency. In: Proceedings
of the ACM Symposium on Cloud Computing. p. 1–14. SOCC ’14 (2014).
https://doi.org/10.1145/2670979.2670988



16 M. Fruth et al.

31. Lindholm, T., Yellin, F., Bracha, G., Buckley, A., Smith, D.: The
Java Virtual Machine Specification - Java SE 16 Edition. Available at:
https://docs.oracle.com/javase/specs/jvms/se16/jvms16.pdf (2 2021), accessed
on June 13, 2021

32. Mauerer, W.: Professional Linux Kernel Architecture. John Wiley & Sons (2010)
33. Mauerer, W., Ramsauer, R., Filho, E.R.L., Lohmann, D., Scherzinger, S.: Silentium!

Run-Analyse-Eradicate the Noise out of the DB/OS Stack. In: Datenbanksysteme
für Business, Technologie und Web (BTW). LNI, vol. P-311, pp. 397–421 (2021).
https://doi.org/10.18420/btw2021-21

34. Michael, N.: Benchmark Harness. In: Encyclopedia of Big Data Technologies. pp.
137–141 (2019). https://doi.org/10.1007/978-3-319-63962-8 134

35. Mühlig, J., Müller, M., Spincyk, O., Teubner, J.: MxKernel: A Novel System
Software Stack for Data Processing on Modern Hardware. Datenbank-Spektrum
20(3), 223–230 (Nov 2020). https://doi.org/10.1007/s13222-020-00357-5

36. Müller, M., Spinczyk, O.: MxKernel: Rethinking Operating System Architecture for
Many-core Hardware. In: 9th Workshop on Systems for Multi-core and Heterogenous
Architectures (2019)

37. Nuessle, C., Kennedy, O., Ziarek, L.: Benchmarking Pocket-Scale Databases. In:
Performance Evaluation and Benchmarking for the Era of Cloud(s). Lecture Notes
in Computer Science, vol. 12257, pp. 99–115 (2019). https://doi.org/10.1007/978-3-
030-55024-0 7

38. OLTPBenchmark.com: OLTPBench. Available at:
https://github.com/oltpbenchmark/oltpbench, accessed on June 13, 2021

39. eclipse openj9: OpenJ9. Available at: https://github.com/eclipse-openj9/openj9,
accessed on June 13, 2021

40. OpenJDK: JDK. Available at: https://github.com/openjdk/jdk, accessed on June
13, 2021

41. Oracle: Java Platform, Standard Edition 16 Reference Implementations. Available
at: https://jdk.java.net/java-se-ri/16, accessed on June 13, 2021

42. Oracle: Java Platform, Standard Edition HotSpot Virtual Machine Garbage
Collection Tuning Guide - 9 Garbage-First Garbage Collector. Avail-
able at: https://docs.oracle.com/javase/9/gctuning/garbage-first-garbage-
collector.htm#JSGCT-GUID-ED3AB6D3-FD9B-4447-9EDF-983ED2F7A573 (Oct
2017), online documentation

43. Paparrizos, J., Liu, C., Barbarioli, B., Hwang, J., Edian, I., Elmore, A.J., Franklin,
M.J., Krishnan, S.: VergeDB: A Database for IoT Analytics on Edge Devices. In:
CIDR (2021)

44. Reda, W., Canini, M., Suresh, L., Kostić, D., Braithwaite, S.: Rein: Taming Tail
Latency in Key-Value Stores via Multiget Scheduling. In: Proceedings of the
Twelfth European Conference on Computer Systems. p. 95–110. EuroSys ’17 (2017).
https://doi.org/10.1145/3064176.3064209

45. Shipilev, A.: JEP 318: Epsilon: A No-Op Garbage Collector (Experimental). Avail-
able at: https://openjdk.java.net/jeps/318 (Sep 2018), accessed on June 13, 2021

46. Tene, G., Iyengar, B., Wolf, M.: C4: the continuously concurrent compacting collec-
tor. In: Proceedings of the 10th International Symposium on Memory Management,
ISMM 2011, San Jose, CA, USA, June 04 - 05, 2011. pp. 79–88. ACM (2011),
https://doi.org/10.1145/1993478.1993491

47. The Transaction Processing Council: TPC-C Benchmark (Revision 5.11). Available
at: http://tpc.org/tpc documents current versions/pdf/tpc-c v5.11.0.pdf (2 2010),
accessed on June 13, 2021



Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking 17

48. Transaction Processing Performance Council: TPC-Homepage. Available at:
http://tpc.org/

49. Unterbrunner, P., Giannikis, G., Alonso, G., Fauser, D., Kossmann, D.: Predictable
Performance for Unpredictable Workloads. Proceedings of the VLDB Endowment
2(1), 706–717 (Aug 2009). https://doi.org/10.14778/1687627.1687707

50. Zhang, Y., Meisner, D., Mars, J., Tang, L.: Treadmill: Attributing the Source
of Tail Latency through Precise Load Testing and Statistical Inference. In: 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA). pp. 456–468 (2016). https://doi.org/10.1109/ISCA.2016.47


